recrystallization temperature
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 54)

H-INDEX

15
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 659
Author(s):  
Sultan Althahban ◽  
Yosef Jazaa ◽  
Omar Bafakeeh ◽  
Abdullah S. Alomari ◽  
Hossam El-Din M. Sallam ◽  
...  

The growing applications of iron/copper bimetallic composites in various industries are increasing. The relationship between the properties of these materials and manufacturing parameters should be well understood. This paper represents an experimental study to evaluate the effect of reinforcement (steel rod) preheating temperature on the mechanical properties (bond strength, microhardness, and wear resistance) of copper matrix composites (QMMC). In preparing the QMMC samples, the melted copper was poured on a steel rod that had been preheated to various temperatures, namely, room temperature, 600 °C, 800 °C, and 1200 °C. Properties of the QMMC (interface microstructure, interfacial bonding strength, microhardness, and wear) were investigated. The experimental results revealed that the best bond between the copper matrix and steel rod formed only in the composites prepared by preheating the steel rods with temperatures lower than the recrystallization temperature of steel (723 °C). This is because the oxide layer and shrinkage voids (due to the difference in shrinkage between the two metals) at the interface hinder atom diffusion and bond formation at higher temperatures. The microhardness test showed that preheating steel rod to 600 °C gives the highest value among all the samples. Furthermore, the QMMC’s wear behavior confirmed that the optimization of preheating temperature is 600 °C.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7229
Author(s):  
Walerian Arabczyk ◽  
Rafał Pelka ◽  
Izabella Jasińska ◽  
Zofia Lendzion-Bieluń

Iron catalysts for ammonia synthesis/nanocrystalline iron promoted with oxides of potassium, aluminum and calcium were characterized by studying the nitriding process with ammonia in kinetic area of the reaction at temperature of 475 °C. Using the equations proposed by Crank, it was found that the process rate is limited by diffusion through the interface, and the estimated value of the nitrogen diffusion coefficient through the boundary layer is 0.1 nm2/s. The reaction rate can be described by Fick’s first equation. It was confirmed that nanocrystallites undergo a phase transformation in their entire volume after reaching the critical concentration, depending on the active specific surface of the nanocrystallite. Nanocrystallites transform from the α-Fe(N) phase to γ’-Fe4N when the total chemical potential of nitrogen compensates for the transformation potential of the iron crystal lattice from α to γ; thus, the nanocrystallites are transformed from the smallest to the largest in reverse order to their active specific surface area. Based on the results of measurements of the nitriding rate obtained for the samples after overheating in hydrogen in the temperature range of 500–700 °C, the probabilities of the density of distributions of the specific active surfaces of iron nanocrystallites of the tested samples were determined. The determined distributions are bimodal and can be described by the sum of two Gaussian distribution functions, where the largest nanocrystallite does not change in the overheating process, and the size of the smallest nanocrystallites increases with increasing recrystallization temperature. Parallel to the nitriding reaction, catalytic decomposition of ammonia takes place in direct proportion to the active surface of the iron nanocrystallite. Based on the ratio of the active iron surface to the specific surface, the degree of coverage of the catalyst surface with the promoters was determined.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6909
Author(s):  
Honghao Wang ◽  
Sheng Ding ◽  
Tom Taylor ◽  
Jun Yanagimoto

Cold rolling is widely employed in the manufacturing industry for the production of metal plates. In the cold rolling process, the thickness reduction of the metal plate under the recrystallization temperature generates severe anisotropy; this influences the subsequent forming processes. Therefore, the generation and prediction of metal plate anisotropy during cold rolling is a highly interesting research topic involving upstream studies of sheet metal forming. In this study, using the finite element method with zooming analysis, we established an efficient elastic–plastic analysis method to predict the metal plate texture after cold rolling. This method for cold rolling texture prediction was confirmed by comparing the experimental and simulation results of cold rolling for an S45C plate with a body-centered cubic lattice. Further, the numerical analysis method proposed in this study can contribute to the study of anisotropy as an alternative to experimental approaches.


2021 ◽  
Vol 9 (10) ◽  
pp. 680-689
Author(s):  
Omer Beganovic ◽  
◽  
Belma Fakic ◽  
Branka Muminovic ◽  
◽  
...  

Additional strengthening of superalloy N07080 described in this work was achieved by warm rolling. Control of the ratio of strength and ductile properties of the superalloy is possible by appropriate selection of the amount of warm deformation and the appropriate selection of the partial recrystallization temperature. In addition, recrystallization annealing makes it possible to equalize the grain size across the cross section of the warm rolled bars, which before recrystallization differ significantly in size in the central and peripheral parts of the bars.


Author(s):  
Yuehong Zheng ◽  
He Zhao ◽  
Sijia Zhu ◽  
Peiqing La ◽  
Faqi Zhan ◽  
...  

The metallic element Mo has almost no solid solubility in copper and can be used as a nucleation particle to refine the grain size and increase the recrystallization temperature of the alloy during solidification. It is expected to obtain copper alloys with good comprehensive properties by reasonably controlling the addition amount of Mo. However, it is difficult to prepare Cu–Mo alloys with uniform structure and there are few related literatures. In this paper, the aluminothermic reaction method, which has the advantages of simple process, low cost, and large size of the prepared alloy, was adopted, and a cluster model with the atomic ratio of Mo and Ni of 1:12 was introduced to design the alloy composition. Here, five alloys with different copper contents were prepared and followed by room temperature rolling with 40%, 60%, and 80% deformation. The results show that the as-cast Cu–Ni–Mo alloys exhibit good formability, have no macroscopic defects and present a small amount of precipitates. With the increase of alloy elements Ni and Mo, the hardness and strength of the alloys increase obviously, while the electrical conductivity decreases gradually. For the rolled alloys, a large number of lamellar deformed structures are formed, the grains are obviously refined, the precipitated phases are broken and the distribution is more uniform, thus the strength and hardness of the alloy increase significantly, the plasticity decrease significantly, while the conductivity changed little. In this study, high-strength samples were obtained, which may be a valuable exploration for the preparation of Cu–Ni–Mo alloy sheets with excellent microstructure and mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5994
Author(s):  
Enrico Gianfranco Campari ◽  
Angelo Casagrande ◽  
Elena Colombini ◽  
Magdalena Lassinantti Gualtieri ◽  
Paolo Veronesi

The effect of Zr addition on the melting temperature of the CoCrFeMnNi High Entropy Alloy (HEA), known as the “Cantor’s Alloy”, is investigated, together with its micro-structure, mechanical properties and thermomechanical recrystallization process. The base and Zr-modified alloys are obtained by vacuum induction melting of mechanically pre-alloyed powders. Raw materials are then cold rolled and annealed. recrystallization occurred during the heat treatment of the cold-rolled HEA. The alloys are characterized by X-ray diffraction, electron microscopy, thermal analyses, mechanical spectroscopy and indentation measures. The main advantages of Zr addition are: (1) a fast vacuum induction melting process; (2) the lower melting temperature, due to Zr eutectics formation with all the Cantor’s alloy elements; (3) the good chemical alloy homogeneity; and (4) the mechanical properties improvement of re-crystallized grains with a coherent structure. The crystallographic lattice of both alloys results in FCC. The Zr-modified HEA presents a higher recrystallization temperature and smaller grain size after recrystallization with respect to the Cantor’s alloy, with precipitation of a coherent second phase, which enhances the alloy hardness and strength.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4869
Author(s):  
Hongpeng Jiang ◽  
Guangqiang Yan ◽  
Jianwei Li ◽  
Jie Xu ◽  
Debin Shan ◽  
...  

Ultrafine-grained (UFG) materials can effectively solve the problem of size effects and improve the mechanical properties due to its ultra-high strength. This paper is dedicated to analyzing the deformation behavior and microstructural evolution of UFG pure copper based on T-shape upsetting test. Experimental results demonstrate that: the edge radius and V-groove angle have significant effects on the rib height and aspect ratio λ during T-shape upsetting; while the surface roughness has little effect on the forming load in the first stage, but in the second stage the influence becomes significant. The dynamic recrystallization temperature of UFG pure copper is between 200 °C and 250 °C.


2021 ◽  
Vol 410 ◽  
pp. 179-184
Author(s):  
Sergey V. Brusnitsyn ◽  
Irina A. Gruzdeva ◽  
Vadim V. Morgunov

This paper is about a comparative analysis of the requirements of the Russian standard, the standard of the European Union and the PRC for overhead contact wires for electrified high-speed railways. New generation contact wires must have a high level of mechanical, electrical and operational properties. The Russian standard does not regulate the chemical composition of alloys used for the contact wires manufacture. Unlike the standards of the European Union and China, the Russian standard regulates the maximum value of the relative creep. Compositions, mechanical properties, electrical resistivity and recrystallization temperature for the contact wires with a cross section of 120 mm2 are given. The requirements for the material for the contact wire are presented. The need to use more durable conductive materials instead of copper is noted since mechanical loads and operating temperatures are constantly increasing. The values of mechanical properties, recrystallization temperature and creep of contact wires made of copper alloys are given. Based on the analysis results of the literature data and the experiments, alloys of the Cu-Mg system are recommended as a material for the contact wire manufacture for an overhead network system for high-speed railways.


Sign in / Sign up

Export Citation Format

Share Document