Involution analysis of the partial differential equations characterizing Hamiltonian vector fields

2003 ◽  
Vol 44 (3) ◽  
pp. 1173-1182 ◽  
Author(s):  
Werner M. Seiler
Author(s):  
Francisco Braun ◽  
Claudia Valls

Abstract It is known that a polynomial local diffeomorphism $(f,\, g): {\mathbb {R}}^{2} \to {\mathbb {R}}^{2}$ is a global diffeomorphism provided the higher homogeneous terms of $f f_x+g g_x$ and $f f_y+g g_y$ do not have real linear factors in common. Here, we give a weight-homogeneous framework of this result. Our approach uses qualitative theory of differential equations. In our reasoning, we obtain a result on polynomial Hamiltonian vector fields in the plane, generalization of a known fact.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1547
Author(s):  
Stephen C. Anco ◽  
Bao Wang

A geometrical formulation for adjoint-symmetries as one-forms is studied for general partial differential equations (PDEs), which provides a dual counterpart of the geometrical meaning of symmetries as tangent vector fields on the solution space of a PDE. Two applications of this formulation are presented. Additionally, for systems of evolution equations, adjoint-symmetries are shown to have another geometrical formulation given by one-forms that are invariant under the flow generated by the system on the solution space. This result is generalized to systems of evolution equations with spatial constraints, where adjoint-symmetry one-forms are shown to be invariant up to a functional multiplier of a normal one-form associated with the constraint equations. All of the results are applicable to the PDE systems of interest in applied mathematics and mathematical physics.


2012 ◽  
Vol 24 (10) ◽  
pp. 1250030 ◽  
Author(s):  
LUCÍA BUA ◽  
IOAN BUCATARU ◽  
MODESTO SALGADO

In this paper, we study symmetries, Newtonoid vector fields, conservation laws, Noether's theorem and its converse, in the framework of the k-symplectic formalism, using the Frölicher–Nijenhuis formalism on the space of k1-velocities of the configuration manifold.For the case k = 1, it is well known that Cartan symmetries induce and are induced by constants of motions, and these results are known as Noether's theorem and its converse. For the case k > 1, we provide a new proof for Noether's theorem, which shows that, in the k-symplectic formalism, each Cartan symmetry induces a conservation law. We prove that, under some assumptions, the converse of Noether's theorem is also true and we provide examples when this is not the case. We also study the relations between dynamical symmetries, Newtonoid vector fields, Cartan symmetries and conservation laws, showing when one of them will imply the others. We use several examples of partial differential equations to illustrate when these concepts are related and when they are not.


Sign in / Sign up

Export Citation Format

Share Document