scholarly journals Heat capacity estimators for random series path-integral methods by finite-difference schemes

2003 ◽  
Vol 119 (23) ◽  
pp. 12119-12128 ◽  
Author(s):  
Cristian Predescu ◽  
Dubravko Sabo ◽  
J. D. Doll ◽  
David L. Freeman
JSIAM Letters ◽  
2011 ◽  
Vol 3 (0) ◽  
pp. 37-40 ◽  
Author(s):  
Yuto Miyatake ◽  
Takayasu Matsuo ◽  
Daisuke Furihata

2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Yaw Kyei ◽  
John Paul Roop ◽  
Guoqing Tang

We derive a family of sixth-order compact finite-difference schemes for the three-dimensional Poisson's equation. As opposed to other research regarding higher-order compact difference schemes, our approach includes consideration of the discretization of the source function on a compact finite-difference stencil. The schemes derived approximate the solution to Poisson's equation on a compact stencil, and thus the schemes can be easily implemented and resulting linear systems are solved in a high-performance computing environment. The resulting discretization is a one-parameter family of finite-difference schemes which may be further optimized for accuracy and stability. Computational experiments are implemented which illustrate the theoretically demonstrated truncation errors.


Sign in / Sign up

Export Citation Format

Share Document