scholarly journals Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT(ASP-W) potential surfaces

2004 ◽  
Vol 120 (10) ◽  
pp. 4777-4789 ◽  
Author(s):  
Nir Goldman ◽  
R. J. Saykally
Author(s):  
Krzysztof Szalewicz ◽  
Robert Bukowski ◽  
Bogumil Jeziorski
Keyword(s):  

2019 ◽  
Author(s):  
Asmus Ougaard Dohn ◽  
Elvar Jónsson ◽  
Hannes Jonsson

The manuscript analyzes the accuracy of our recently developed reciprocal polarizable embedding scheme, where a density functional theory model of the QM region is coupled to a dipole- and quadrupole polarizable water potential of the MM region. We present calculations of water clusters and liquid water where we analyze the energy, atomic forces and total polarization to demonstrate that artifacts in energy and polarization introduced by the QM/MM coupling are small and well-behaved. Furthermore, our methodology improves the consistency of the structure of optimized water hexamer geometries when compared to results obtained with models that neglect polarization. Additionally, the manuscript provides evidence that our coupling scheme eliminates artifacts in the structure of liquid water obtained with simpler electrostatic embedding models.


2020 ◽  
Vol 6 (51) ◽  
pp. eabd4699
Author(s):  
Mingyuan He ◽  
Chenwei Lv ◽  
Hai-Qing Lin ◽  
Qi Zhou

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 133-139
Author(s):  
ALEXANDRE MESQUITA ◽  
MOISÉS RAZEIRA ◽  
DIMITER HADJIMICHEF ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
ROSANA O. GOMES ◽  
...  

We study the effects of antikaon condensates in neutron stars in the framework of a relativistic effective model with derivative couplings which includes genuine many-body forces simulated by nonlinear interaction terms involving scalar-isoscalar (σ, σ*), vector-isoscalar (ω, ɸ), vector-isovector (ϱ), scalar-isovector (δ) mesons. The effective model presented in this work has a philosophy quite similar to the original version of the model with parameterized couplings. But unlike that, in which the parametrization is directly inserted in the coupling constants of the Glendenning model, we present here a method for the derivation of the parametric dependence of the coupling terms, in a way that allows in one side to consistently justify this parametrization and in the other to extend in a coherent way the range of possibilities of parameterizations in effective models with derivative couplings. The extended model is then applied to the description of the mass of neutron stars.


Author(s):  
Lumeng Liu ◽  
Wenmao Zeng ◽  
Shiliang Johnathan Tan ◽  
Meng Liu ◽  
Duong Do

Functional groups (FGs) in porous carbon play a pivotal role in water adsorption by nucleating water clusters followed by their coalescence, the process for which is the precursor for the...


ChemInform ◽  
2015 ◽  
Vol 46 (17) ◽  
pp. no-no
Author(s):  
R. Benny Gerber ◽  
Mychel E. Varner ◽  
Audrey D. Hammerich ◽  
Sampsa Riikonen ◽  
Garold Murdachaew ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document