Probing ion channel conformational dynamics using simultaneous single-molecule ultrafast spectroscopy and patch-clamp electric recording

2004 ◽  
Vol 84 (10) ◽  
pp. 1792-1794 ◽  
Author(s):  
Greg Harms ◽  
Galya Orr ◽  
H. Peter Lu
2020 ◽  
Author(s):  
Numan Celik ◽  
Sam T. M. Ball ◽  
Elaheh Sayari ◽  
Lina Abdul Kadir ◽  
Fiona O’Brien ◽  
...  

AbstractUnderstanding and accurately quantifying ion channel molecule gating in real time is vital for knowledge of cell membrane behaviour, drug discovery and toxicity screening. Doing this with single-molecule resolution first requires the detection of individual protein pore opening and closing transitions and construction of a so-called idealised record which indicates sample-point by samplepoint whether a given molecule is open or closed. Creating this can be difficult, since patch-clamp electrophysiology data can be noisy or contain multiple ion channel molecules. We have recently developed a deep learning model to achieve this called Deep-Channel, but further development is limited by the massive datasets need to train and validate models. In the past, this problem has been tackled by simulation of single molecule activity from Markov models with the addition of pseudo-random noise. In the present report we develop a new method to synthesise raw data, based on generative adversarial networks (GANs). The limitation to direct application of a GAN with this method has been that whilst there are methods to generate classified output image by image, there has been no method to generate an entire timeseries with parallel idealisation, sample-point by sample-point. In this paper, we over-come this problem with DeepGANnel, a model that splits training data raw and parallel idealised data into different rows of image windows and passes these data through a progressive-GAN. This new methodology allows generation of realistic, idealisation synchronised single molecule patch-clamp data, without the biases inherent in pseudorandom simulation methods. This method will be useful for development of single molecule analysis methods and may in the future prove useful for generation of biological models including single molecule resolution stochastic data. The model is easily extendable to other timeseries data requiring parallel labelling, such as labelled ECG.


2018 ◽  
Vol 115 (41) ◽  
pp. 10333-10338 ◽  
Author(s):  
Yi Ruan ◽  
Kevin Kao ◽  
Solène Lefebvre ◽  
Arin Marchesi ◽  
Pierre-Jean Corringer ◽  
...  

Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated, cation-selective channel, is a prokaryotic homolog of the pentameric Cys-loop receptor ligand-gated ion channel family. Despite large changes in ion conductance, small conformational changes were detected in X-ray structures of detergent-solubilized GLIC at pH 4 (active/desensitized state) and pH 7 (closed state). Here, we used high-speed atomic force microscopy (HS-AFM) combined with a buffer exchange system to perform structural titration experiments to visualize GLIC gating at the single-molecule level under native conditions. Reference-free 2D classification revealed channels in multiple conformational states during pH gating. We find changes of protein–protein interactions so far elusive and conformational dynamics much larger than previously assumed. Asymmetric pentamers populate early stages of activation, which provides evidence for an intermediate preactivated state.


Sign in / Sign up

Export Citation Format

Share Document