On the Quantum‐Mechanical Fokker—Planck Equation

1965 ◽  
Vol 43 (8) ◽  
pp. 2633-2642 ◽  
Author(s):  
H. Ted Davis ◽  
Kazuo Hiroike ◽  
Stuart A. Rice
2017 ◽  
Vol 19 (27) ◽  
pp. 17577-17586 ◽  
Author(s):  
Ludmilla Guduff ◽  
Ahmed J. Allami ◽  
Carine van Heijenoort ◽  
Jean-Nicolas Dumez ◽  
Ilya Kuprov

We present a convenient and powerful simulation formalism for ultrafast NMR spectroscopy. The formalism is based on the Fokker–Planck equation that supports systems with complicated combinations of classical spatial dynamics and quantum mechanical spin dynamics.


1989 ◽  
Vol 9 (1) ◽  
pp. 109-120
Author(s):  
G. Liao ◽  
A.F. Lawrence ◽  
A.T. Abawi

1998 ◽  
Vol 168 (4) ◽  
pp. 475 ◽  
Author(s):  
A.I. Olemskoi

2020 ◽  
Vol 23 (2) ◽  
pp. 450-483 ◽  
Author(s):  
Giacomo Ascione ◽  
Yuliya Mishura ◽  
Enrica Pirozzi

AbstractWe define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.


1983 ◽  
Vol 32 (3) ◽  
pp. 545-553 ◽  
Author(s):  
M. C. Valsakumar

Sign in / Sign up

Export Citation Format

Share Document