The Gas Flow Past Slender Bodies

1953 ◽  
Vol 24 (5) ◽  
pp. 584-589 ◽  
Author(s):  
Max M. Munk
Keyword(s):  
Gas Flow ◽  
2020 ◽  
Vol 32 (8) ◽  
pp. 087108
Author(s):  
A. A. Abramov ◽  
A. V. Butkovskii ◽  
O. G. Buzykin

1981 ◽  
Vol 108 ◽  
pp. 147-157 ◽  
Author(s):  
R. M. Barron ◽  
J. T. Wiley

Hypersonic small-disturbance theory is extended to consider the problem of dusty-gas flow past thin two-dimensional bodies. The mass fraction of suspended particles is assumed to be sufficiently large that the two-way interaction between particle phase and gas phase must be considered. The system of eight governing equations is further reduced by considering the Newtonian approximation γ → 1 andM∞→ ∞. The Newtonian theory up to second order is studied and the equations are solved for the case of a thin wedge at zero angle of attack. Expressions for the streamlines, dust-particle paths, shock-wave location and all flow variables are obtained. It is seen that the presence of the dust increases the pressure along the wedge surface and tends to bend the shock wave towards the body surface. Other effects of the interaction of the two phases are also discussed.


2018 ◽  
Vol 848 ◽  
pp. 756-787 ◽  
Author(s):  
A. Kluwick ◽  
E. A. Cox

The behaviour of steady transonic dense gas flow is essentially governed by two non-dimensional parameters characterising the magnitude and sign of the fundamental derivative of gas dynamics ($\unicode[STIX]{x1D6E4}$) and its derivative with respect to the density at constant entropy ($\unicode[STIX]{x1D6EC}$) in the small-disturbance limit. The resulting response to external forcing is surprisingly rich and studied in detail for the canonical problem of two-dimensional flow past compression/expansion ramps.


Sign in / Sign up

Export Citation Format

Share Document