Nitrogen Isotopic Fractionation between Nitric Acid and the Oxides of Nitrogen

1959 ◽  
Vol 30 (5) ◽  
pp. 1206-1209 ◽  
Author(s):  
L. L. Brown ◽  
G. M. Begun
2010 ◽  
Vol 10 (10) ◽  
pp. 4741-4756 ◽  
Author(s):  
E. Remsberg ◽  
M. Natarajan ◽  
B. T. Marshall ◽  
L. L. Gordley ◽  
R. E. Thompson ◽  
...  

Abstract. The quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) nitric acid (HNO3) and nitrogen dioxide (NO2) profiles and distributions of 1978/1979 are described after their processing with an updated, Version 6 (V6) algorithm and subsequent archival in 2002. Estimates of the precision and accuracy of both of those species are developed and provided herein. The character of the V6 HNO3 profiles is relatively unchanged from that of the earlier LIMS Version 5 (V5) profiles, except in the upper stratosphere where the interfering effects of CO2 are accounted for better with V6. The accuracy of the retrieved V6 NO2 is also significantly better in the middle and upper stratosphere, due to improvements in its spectral line parameters and in the reduced biases for the accompanying V6 temperature and water vapor profiles. As a result of these important updates, there is better agreement with theoretical calculations for profiles of the HNO3/NO2 ratio, day-to-night NO2 ratio, and with estimates of the production of NO2 in the mesosphere and its descent to the upper stratosphere during polar night. In particular, the findings for middle and upper stratospheric NO2 should also be more compatible with those obtained from more recent satellite sensors because the effects of the spin-splitting of the NO2 lines are accounted for now with the LIMS V6 algorithm. The improved precisions and more frequent retrievals of the LIMS profiles along their orbit tracks provide for better continuity and detail in map analyses of these two species on pressure surfaces. It is judged that the chemical effects of the oxides of nitrogen on ozone can be studied quantitatively throughout the stratosphere with the LIMS V6 data.


1980 ◽  
Vol 85 (C12) ◽  
pp. 7417-7425 ◽  
Author(s):  
T. J. Kelly ◽  
D. H. Stedman ◽  
J. A. Ritter ◽  
R. B. Harvey

2010 ◽  
Vol 10 (2) ◽  
pp. 2769-2808
Author(s):  
E. Remsberg ◽  
M. Natarajan ◽  
T. Marshall ◽  
L. L. Gordley ◽  
R. E. Thompson ◽  
...  

Abstract. The quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) nitric acid (HNO3) and nitrogen dioxide (NO2) profiles and distributions of 1978/1979 is described after their processing with an updated, Version 6 (V6) algorithm and subsequent archival in 2002. Estimates of the precision and accuracy of both of those species are developed and provided herein. The character of the V6 HNO3 profiles is relatively unchanged from that of the earlier LIMS Version 5 (V5) profiles, except in the upper stratosphere where the interfering effects of CO2 are accounted for better with V6. The accuracy of the retrieved V6 NO2 is also significantly better in the middle and upper stratosphere, due to improvements in its spectral line parameters and in the reduced biases for the accompanying V6 temperature and water vapor profiles. As a result of these important updates, there is better agreement with theoretical calculations for profiles of the HNO3/NO2 ratio, day-to-night NO2 ratio, and with estimates of the production of NO2 in the mesosphere and its descent to the upper stratosphere during polar night. The improved precisions and more frequent retrievals of the profiles along the LIMS orbit tracks provide for better continuity and detail in map analyses of these two species on pressure surfaces. It is judged that the chemical effects of the oxides of nitrogen on ozone can be examined quantitatively throughout the stratosphere with the LIMS V6 data, and that the findings will be more compatible with those obtained from measurements of the same species from subsequent satellite sensors.


2021 ◽  
Vol 21 (22) ◽  
pp. 16793-16795
Author(s):  
James M. Roberts

Abstract. Chai et al. (2021) recently published measurements of wildfire-derived (WF) oxides of nitrogen (NOx) and nitrous acid (HONO) and their isotopic composition. The method used to sample NOx, collection in alkaline solution, has a known 1:1 interference from another reactive nitrogen compound, acetyl peroxynitrate (PAN). Although PAN is thermally unstable, subsequent reactions with nitrogen dioxide (NO2) in effect extend the lifetime of PAN many times longer than the initial decomposition reaction would indicate. This, coupled with the rapid and efficient formation of PAN in WF plumes, means the NOx measurements reported by Chai et al.​​​​​​​ were severely impacted by PAN. In addition, the model reactions in the original paper included neither the reactions of NO2 with hydroxyl radical (OH) to form nitric acid nor the efficient reaction of larger organic radicals with nitric oxide to form organic nitrates (RONO2).


Sign in / Sign up

Export Citation Format

Share Document