scholarly journals Flying mirror model for interaction of a super-intense laser pulse with a thin plasma layer: Transparency and shaping of linearly polarized laser pulses

2007 ◽  
Vol 14 (11) ◽  
pp. 113102 ◽  
Author(s):  
Victor V. Kulagin ◽  
Vladimir A. Cherepenin ◽  
Min Sup Hur ◽  
Hyyong Suk
2001 ◽  
Vol 6 (1) ◽  
pp. 21-26
Author(s):  
R. Danielius ◽  
D. Mikalauskas ◽  
A. Dubietis ◽  
A. Piskarskas

We report on observation of self-guiding of picosecond laser pulses in air that produces large-scale self-phase modulation. The converging picosecond laser beam produced a confined filament over 3 m of propagation with the whitelight spectrum.


2004 ◽  
Vol 22 (3) ◽  
pp. 307-314 ◽  
Author(s):  
LI BAIWEN ◽  
S. ISHIGURO ◽  
M.M. šKORIĆ ◽  
H. TAKAMARU ◽  
T. SATO

The mechanism of electron acceleration by intense laser pulse interacting with an underdense plasma layer is examined by one-dimensional particle-in-cell (1D-PIC) simulations. The standard dephasing limit and the electron acceleration process are discussed briefly. A new phenomenon, of short high-quality, well-collimated return relativistic electron beam with thermal energy spread, is observed in the direction opposite to laser propagation. The process of the electron beam formation, its characteristics, and the time-history inxandpxspace for test electrons in the beam, are analyzed and exposed clearly. Finally, an estimate for the maximum electron energy appears in a good agreement with simulation results.


2021 ◽  
Vol 127 (2) ◽  
Author(s):  
Tiago de Faria Pinto ◽  
Jan Mathijssen ◽  
Randy Meijer ◽  
Hao Zhang ◽  
Alex Bayerle ◽  
...  

AbstractIn this work, the expansion dynamics of liquid tin micro-droplets irradiated by femtosecond laser pulses were investigated. The effects of laser pulse duration, energy, and polarization on ablation, cavitation, and spallation dynamics were studied using laser pulse durations ranging from 220 fs to 10 ps, with energies ranging from 1 to 5 mJ, for micro-droplets with an initial radius of 15 and 23 $$\upmu$$ μ m. Using linearly polarized laser pulses, cylindrically asymmetric shock waves were produced, leading to novel non-symmetric target shapes, the asymmetry of which was studied as a function of laser pulse parameters and droplet size. A good qualitative agreement was obtained between smoothed-particle hydrodynamics simulations and high-resolution stroboscopic experimental data of the droplet deformation dynamics.


2002 ◽  
Vol 88 (19) ◽  
Author(s):  
J. Fuchs ◽  
C. Labaune ◽  
H. Bandulet ◽  
P. Michel ◽  
S. Depierreux ◽  
...  

2010 ◽  
Vol 28 (2) ◽  
pp. 293-298 ◽  
Author(s):  
Wei Yu ◽  
Lihua Cao ◽  
M.Y. Yu ◽  
A.L. Lei ◽  
Z.M. Sheng ◽  
...  

AbstractIt is shown that an intense laser pulse can be focused by a conical channel. This anomalous light focusing can be attributed to a hitherto ignored effect in nonlinear optics, namely that the boundary response depends on the light intensity: the inner cone surface is ionized and the laser pulse is in turn modified by the resulting boundary plasma. The interaction creates a new self-consistently evolving light-plasma boundary, which greatly reduces reflection and enhances forward propagation of the light pulse. The hollow cone can thus be used for attaining extremely high light intensities for applications in strong-field and high energy-density physics and other areas.


Sign in / Sign up

Export Citation Format

Share Document