coherence time
Recently Published Documents





2022 ◽  
Vol 13 (1) ◽  
Ke Wang ◽  
Gang Xu ◽  
Fei Gao ◽  
He Liu ◽  
Rong-Long Ma ◽  

AbstractOperation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs) in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate operations we accomplish. Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo’s criteria for a scalable quantum information processor.

2022 ◽  
Chandan Kumar Sheemar ◽  
Dirk Slock

This paper presents two novel hybrid beamforming (HYBF) designs for a multi-cell massive multiple-input-multiple-output (mMIMO) millimeter wave (mmWave) full duplex (FD) system under limited dynamic range (LDR). Firstly, we present a novel centralized HYBF (C-HYBF) scheme based on alternating optimization. In general, the complexity of C-HYBF schemes scales quadratically as a function of the number of users and cells, which may limit their scalability. Moreover, they require significant communication overhead to transfer complete channel state information (CSI) to the central node every channel coherence time for optimization. The central node also requires very high computational power to jointly optimize many variables for the uplink (UL) and downlink (DL) users in FD systems. To overcome these drawbacks, we propose a very low-complexity and scalable cooperative per-link parallel and distributed (P$\&$D)-HYBF scheme. It allows each mmWave FD base station (BS) to update the beamformers for its users in a distributed fashion and independently in parallel on different computational processors. The complexity of P$\&$D-HYBF scales only linearly as the network size grows, making it desirable for the next generation of large and dense mmWave FD networks. Simulation results show that both designs significantly outperform the fully digital half duplex (HD) system with only a few radio-frequency (RF) chains and achieve similar performance. <br>

Francisco Javier González ◽  
Raúl Coto

Abstract Solid-state quantum registers are exceptional for storing quantum information at room temperature with long coherence time. Nevertheless, practical applications toward quantum supremacy require even longer coherence time to allow for more complex algorithms. In this work we propose a quantum register that lies in a decoherence-protected subspace to be implemented with nuclear spins nearby a Nitrogen-Vacancy center in diamond. The quantum information is encoded in two logical states composed of two Carbon-13 nuclear spins, while an electron spin is used as ancilla for initialization and control. Moreover, by tuning an off-axis magnetic field we enable non-nuclear-spin- preserving transitions that we use for preparing and manipulating the register through Stimulating Raman Adiabatic Passage. Furthermore, we consider more elaborated sequences to improve simultaneous control over the system yielding decreased gate time.

2021 ◽  
pp. 1-17
Ankur Pandit ◽  
Suryakant Sawant ◽  
Jayantrao Mohite ◽  
Srinivasu Pappula

Mun Dae Kim

Abstract We propose a scheme for controlling the gradiometric flux qubit (GFQ) by applying an ac bias current in a circuit-QED architecture. The GFQ is insensitive to the magnetic flux fluctuations, which at the same time makes it challenging to manipulate the qubit states by an external magnetic field. In this study, we demonstrate that an ac bias current applied to the $\alpha$-junction of the GFQ can control the qubit states. Further, the present scheme is robust against the charge fluctuation as well as the magnetic flux fluctuations, promising a long coherence time for quantum gate operations. We introduce a circuit-QED architecture to perform the single and two-qubit operations with a sufficiently strong coupling strength.

2021 ◽  
Vol 12 (1) ◽  
Gary P. Centers ◽  
John W. Blanchard ◽  
Jan Conrad ◽  
Nataniel L. Figueroa ◽  
Antoine Garcon ◽  

AbstractNumerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute dark matter. In the standard halo model of galactic dark matter, the velocity distribution of the bosonic dark matter field defines a characteristic coherence time τc. Until recently, laboratory experiments searching for bosonic dark matter fields have been in the regime where the measurement time T significantly exceeds τc, so null results have been interpreted by assuming a bosonic field amplitude Φ0 fixed by the average local dark matter density. Here we show that experiments operating in the T ≪ τc regime do not sample the full distribution of bosonic dark matter field amplitudes and therefore it is incorrect to assume a fixed value of Φ0 when inferring constraints. Instead, in order to interpret laboratory measurements (even in the event of a discovery), it is necessary to account for the stochastic nature of such a virialized ultralight field. The constraints inferred from several previous null experiments searching for ultralight bosonic dark matter were overestimated by factors ranging from 3 to 10 depending on experimental details, model assumptions, and choice of inference framework.

2021 ◽  
Vol 7 (1) ◽  
Oscar Bulancea-Lindvall ◽  
Nguyen T. Son ◽  
Igor A. Abrikosov ◽  
Viktor Ivády

AbstractDivacancy spins implement qubits with outstanding characteristics and capabilities in an industrial semiconductor host. On the other hand, there are still numerous open questions about the physics of these important defects, for instance, spin relaxation has not been thoroughly studied yet. Here, we carry out a theoretical study on environmental spin-induced spin relaxation processes of divacancy qubits in the 4H polytype of silicon carbide (4H-SiC). We reveal all the relevant magnetic field values where the longitudinal spin relaxation time T1 drops resonantly due to the coupling to either nuclear spins or electron spins. We quantitatively analyze the dependence of the T1 time on the concentration of point defect spins and the applied magnetic field and provide an analytical expression. We demonstrate that dipolar spin relaxation plays a significant role both in as-grown and ion-implanted samples and it often limits the coherence time of divacancy qubits in 4H-SiC.

2021 ◽  
Vol 13 (23) ◽  
pp. 4814
Ignacio Borlaf-Mena ◽  
Ovidiu Badea ◽  
Mihai Andrei Tanase

This study tested the ability of Sentinel-1 C-band to separate forest from other common land use classes (i.e., urban, low vegetation and water) at two different sites. The first site is characterized by temperate forests and rough terrain while the second by tropical forest and near-flat terrain. We trained a support vector machine classifier using increasing feature sets starting from annual backscatter statistics (average, standard deviation) and adding long-term coherence (i.e., coherence estimate for two acquisitions with a large time difference), as well as short-term (six to twelve days) coherence statistics from annual time series. Classification accuracies using all feature sets was high (>92% overall accuracy). For temperate forests the overall accuracy improved by up to 5% when coherence features were added: long-term coherence reduced misclassification of forest as urban, whereas short-term coherence statistics reduced the misclassification of low vegetation as forest. Classification accuracy for tropical forests showed little differences across feature sets, as the annual backscatter statistics sufficed to separate forest from low vegetation, the other dominant land cover. Our results show the importance of coherence for forest classification over rough terrain, where forest omission error was reduced up to 11%.

2021 ◽  
Vol 12 (1) ◽  
Nathanaël Cottet ◽  
Haonan Xiong ◽  
Long B. Nguyen ◽  
Yen-Hsiang Lin ◽  
Vladimir E. Manucharyan

AbstractInterfacing long-lived qubits with propagating photons is a fundamental challenge in quantum technology. Cavity and circuit quantum electrodynamics (cQED) architectures rely on an off-resonant cavity, which blocks the qubit emission and enables a quantum non-demolition (QND) dispersive readout. However, no such buffer mode is necessary for controlling a large class of three-level systems that combine a metastable qubit transition with a bright cycling transition, using the electron shelving effect. Here we demonstrate shelving of a circuit atom, fluxonium, placed inside a microwave waveguide. With no cavity modes in the setup, the qubit coherence time exceeds 50 μs, and the cycling transition’s radiative lifetime is under 100 ns. By detecting a homodyne fluorescence signal from the cycling transition, we implement a QND readout of the qubit and account for readout errors using a minimal optical pumping model. Our result establishes a resource-efficient (cavityless) alternative to cQED for controlling superconducting qubits.

Sign in / Sign up

Export Citation Format

Share Document