The role of Debye–Hückel electronic energy levels on the thermodynamic properties of hydrogen plasmas including isentropic coefficients

2008 ◽  
Vol 15 (8) ◽  
pp. 082115 ◽  
Author(s):  
M. Capitelli ◽  
D. Giordano ◽  
G. Colonna
2006 ◽  
Vol 986 ◽  
Author(s):  
Richard G. Haire ◽  
Stephen Heathman

AbstractAn important issue in actinide science is the changing role of the 5f electrons, both when progressing across the series, as well as how experimental variables affect these roles in a particular element's chemistries and physics. The function of these 5f electrons can be changed by experimental conditions: temperature and pressure being two of many such variables. The 5f electrons of several actinide metals, their alloys and compounds are affected greatly by pressure, due to the very large decreases in interatomic distances encountered under pressure. The latter bring about significant changes in the total energy of the system and in the electronic energy levels, which in turn affect the potential for overlap/hybridization) of their orbitals, promotion of electrons to other orbitals, etc. The physical state, temperature, pressure, specific structures, magnetic interactions and spin polarization effects are all critical parameters for bonding. Often correlations of behavior with these parameters can provide unique insights and understanding into the bonding and the changes that occur in it. With the advancement of modern computation approaches using FPMTO, or other approaches, theory has enlightened greatly the understanding of not only the bonding behavior of these elements but also the understanding of changes observed experimentally. But these computational efforts have some complications and limitations, and at times experimental findings and theory are not always in full agreement. In contrast to the behaviors of the elements, changes observed with compounds often are not be linked directly to the involvement of 5f electrons, due in part to the presence and bonding role of non-actinide atoms. The latter affect both the actinide interatomic distances and the type of electronic orbtals that interact. Presented here is an overview of the pressure behavior several actinide elements, some insights into the bonding behavior of compounds under pressure and selected correlations that help explain changes occurring in electronic configurations and bonding.


The system of bands in the visible region of the emission spectrum of magnesium hydride is now well known. The bands with heads at λλ 5622, 5211, 4845 were first measured by Prof. A. Fowler, who arranged many of the strongest lines in empirical series for identification with absorption lines in the spectra of sun-spots. Later, Heurlinger rearranged these series in the now familiar form of P, Q and R branches, and considered them, with the OH group, as typical of doublet systems in his classification of the fine structure of bands. More recently, W. W. Watson and P. Rudnick have remeasured these bands, using the second order of a 21-foot concave grating, and have carried out a further investigation of the fine structure in the light of the present theory of band spectra. Their detection of an isotope effect of the right order of magnitude, considered with the general structure of the system, and the experimental work on the production of the spectrum, seems conclusive in assigning these bands to the diatomic molecule MgH. The ultra-violet spectrum of magnesium hydride is not so well known. The band at λ 2430 and the series of double lines in the region λ 2940 to λ 3100, which were recorded by Prof. Fowler in 1909 as accompanying the group of bands in the visible region, appear to have undergone no further investigation. In view of the important part played by hydride band spectra in the correlation of molecular and atomic electronic energy levels, it was thought that a study of these features might prove of interest in yielding further information on the energy states of the MgH molecule. The present paper deals with observations on the band at λ 2430; details of an investigation of the other features of the ultra-violet spectrum will be given in a later communication.


Sign in / Sign up

Export Citation Format

Share Document