scholarly journals Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting

2009 ◽  
Vol 105 (1) ◽  
pp. 013117 ◽  
Author(s):  
Yuh-Renn Wu ◽  
Yih-Yin Lin ◽  
Hung-Hsun Huang ◽  
Jasprit Singh
2014 ◽  
Vol 2 (30) ◽  
pp. 6084 ◽  
Author(s):  
Naoyuki Komuro ◽  
Masayoshi Mikami ◽  
Yasuo Shimomura ◽  
Erica G. Bithell ◽  
Anthony K. Cheetham

2014 ◽  
Vol 6 (2) ◽  
pp. 217-231 ◽  
Author(s):  
F. Khatun ◽  
M. A. Gafur ◽  
M. S. Ali ◽  
M. S. Islam ◽  
M. A. R. Sarker

The lithium-cobalt oxide LixCoO2 is a promising candidate as highly active cathode material of lithium ion rechargeable batteries. The crystalline-layered lithium cobaltite has attracted increased attention due to recent discoveries of some extraordinary properties such as unconventional transport and magnetic properties. Due to layered crystal structure, Li contents (x) in LixCoO2 might play an important role on its interesting properties. LiCoO2 crystalline cathode material was prepared by using solid-state reaction synthesis, and then LixCoO2 (x<1) has been synthesized by deintercalation of produced single-phase powders. Structure and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), Infrared spectroscopy, Impedance analyzer etc. The influence of lithium composition (x) on structural, electronic and optical properties of lithium cobaltite was studied. Temperature dependent electrical resistivity was measured using four-probe technique. While LixCoO2 with x = 0.9 is a semiconductor, the highly Li-deficient phase (0.75 ? x ? 0.5) exhibits metallic conductivity. The ionic conductivity of LixCoO2 (x = 0.5 – 1.15) was measured using impedance spectroscopy and maximum conductivity of Li0.5CoO2 was found to be 6.5×10-6 S/cm at 273 K. The properties that are important for applications, such as ionic conductivity, charge capacity, and optical absorption are observed to increase with Li deficiency. Keywords: Calcination; Characterization; Inorganic compounds; Solid-State reaction; X-ray diffraction. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v6i2.17900 J. Sci. Res. 6 (2), 217-231 (2014)  


2004 ◽  
Vol 829 ◽  
Author(s):  
Valeria Gabriela Stoleru ◽  
Elias Towe ◽  
Chaoying Ni ◽  
Debdas Pal

ABSTRACTThe experimental and theoretical results of the electronic and optical properties of quantum dot artificial molecules (AMs), formed by pairs of electronically coupled quantum dots (QDs), are presented here in order to identify the necessary conditions for the development of new types of terahertz (THz) injection lasers based on intraband carrier transitions. We have performed analytical calculations to obtain the spatial strain distribution in vertically aligned (In, Ga)As QDs grown on (001) GaAs substrates by molecular beam epitaxy. Electronic coupling of the dots, mainly governed by the thickness of the separating barrier between the dot layers, is allowed due to the strain field-assisted self-organization of the dots. The calculated strain field reproduces our cross sectional high-resolution transmission electron microscopy observations very well. We further take into account the microscopic effects of the spatial strain distribution on carrier confinement potentials, and compute the electronic structure of the AM. Our calculations of the peak luminescence energies are in good agreement with our experimental results and those of others. The growth of quantum dot molecules represents a major step in tailoring the electronic and optical properties of the nanostructures.


Sign in / Sign up

Export Citation Format

Share Document