Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures

2010 ◽  
Vol 107 (1) ◽  
pp. 014317 ◽  
Author(s):  
Gengchiau Liang ◽  
Wen Huang ◽  
Chee Shin Koong ◽  
Jian-Sheng Wang ◽  
Jinghua Lan
RSC Advances ◽  
2016 ◽  
Vol 6 (100) ◽  
pp. 98197-98207 ◽  
Author(s):  
A. H. Reshak

The thermoelectric properties of the spin-polarized half-metallic ferromagnetic CsTe and RbSe compounds are investigated based on the calculated spin-polarized electronic band structures.


2021 ◽  
Vol 35 (03) ◽  
pp. 2150046
Author(s):  
Jisha Annie Abraham ◽  
Aditya Dey ◽  
Meena Kumari

An full potential linearized augmented plane wave (FP-LAPW)-based analytical study of structural, electronic, mechanical and thermoelectric properties has been done for the Ruthenium-based half heusler RuTiX (X = Si, Ge and Sn) compounds. An efficient method to develop Half Heusler (HH) alloys is by examining their stability of structure in various phases, by plotting electronic band structures, computing elastic constants and also by studying the presence of magnetic moments. In this study, we have used DFT-based calculations to scrutinise the paramagnetic/ferromagnetic (FM) as well as metallic/semiconducting behavior of these HH compounds. The predicted phase stability using the energy versus volume curves reveals that they are stable in Type C phase. RuTiSi and RuTiGe are found to be stable in the paramagnetic phase whereas RuTiSn is stable in the FM phase with a finite value of magnetic moment. The electronic band structures and density of states (DOS) plots predict that the studied compounds belong to [Formula: see text]-type degenerate semiconductors as the Fermi Level lies within the valence band. Due to the existence of finite DOS at the Fermi level, they show an enhanced metallic behavior. A small value indirect gap is found between valence band maximum (VBM) and conduction band minimum (CBM) in all these studied RuTiX HH alloys depicting their semiconducting nature. The elastic constants of cubic phase are computed for the first time and they obey the mechanical stability criteria. The positive value of [Formula: see text] and value of [Formula: see text]/[Formula: see text] ratio of these HH compounds exhibit their ductile nature. The thermoelectric properties of these compounds are investigated, and a comparatively higher figure of merit reveals their scope of application in thermoelectric devices.


2021 ◽  
Vol 575 (1) ◽  
pp. 11-17
Author(s):  
S. Krylova ◽  
I. Gudim ◽  
A. Aleksandrovsky ◽  
A. Vtyurin ◽  
A. Krylov

2021 ◽  
Author(s):  
Jinsun Lee ◽  
Xinghui Liu ◽  
Ashwani Kumar ◽  
Yosep Hwang ◽  
Eunji Lee ◽  
...  

This work highlights the importance of a rational design for more energetically suitable nitrogen reduction reaction routes and mechanisms by regulating the electronic band structures with phase-selective defect sites.


1961 ◽  
Vol 14 (3) ◽  
pp. 344 ◽  
Author(s):  
EG McRae

The theory of Part I of this series (McRae 1961) is developed in detail for dimeric systems. The simplest possible theory of the exciton states for a system of two non-rigid molecules is obtained through the use of perturbation theory. The theory makes possible the prediction of electronic band structures in absorption and fluorescence spectra as functions of the theoretical Davydov splitting for two rigid molecules. Numerical calculations are made for a dimer of a typical dye, and the results are compared with the observed absorption spectrum of the 1,1'-diethyl-2,2'-pyridocyanine iodide dimer.


Sign in / Sign up

Export Citation Format

Share Document