Cylindrical Couette Flow of Rarefied Gas: Comparison between Navier-Stokes and DSMC Computations

2010 ◽  
Author(s):  
P. Gospodinov ◽  
D. Dankov ◽  
V. Roussinov ◽  
S. Stefanov ◽  
Michail D. Todorov ◽  
...  
2002 ◽  
Vol 12 (03) ◽  
pp. 445-459 ◽  
Author(s):  
LILIANA M. GRAMANI CUMIN ◽  
GILBERTO M. KREMER ◽  
FELIX SHARIPOV

The solution of the field equations of the cylindrical Couette flow problem for a rarefied gas is found when the state of equilibrium between the cylinders is perturbed by the following small thermodynamic forces: (i) a pressure difference; (ii) an angular velocity difference; and (iii) a temperature difference. The flow is analyzed within the framework of continuum mechanics by using the field equations that follow from the balance equations of mass, momentum and energy of a viscous and heat conducting gas. These equations are solved analytically by considering slip and jump boundary conditions. The fields of density, velocity, temperature, heat flux vector and viscous stress tensor are calculated as functions of the Knudsen number and of the angular velocity of the rotating cylinders for each thermodynamic force. The asymptotic behaviors of these fields are compared with those obtained from a kinetic model of the Boltzmann equation. The influence of the slip and jump boundary conditions on the solutions is also discussed.


1967 ◽  
Vol 10 (6) ◽  
pp. 1200 ◽  
Author(s):  
Carlo Cercignani

1991 ◽  
Vol 69 (12) ◽  
pp. 1429-1440
Author(s):  
M. A. Mahmoud ◽  
G. A. Shalaby

A kinetic-theory treatment of the cylindrical Couette flow is considered. A generalization of the case of a surface with an arbitrary reflection coefficient that depends on the nature of the surface. In this paper we consider that the reflection coefficients of the inner and outer walls are different. A model kinetic equation of the BGK (Bhatnger–Gross–Krook) type is solved using the method of moments with a two-sided distribution function. The dependence of the velocity and shear stress on the reflection coefficient is obtained.


2009 ◽  
Author(s):  
P. Gospodinov ◽  
D. Dankov ◽  
V. Roussinov ◽  
S. Stefanov ◽  
Michail D. Todorov ◽  
...  

1993 ◽  
Vol 71 (11-12) ◽  
pp. 518-536 ◽  
Author(s):  
Roger E. Khayat ◽  
Byung Chan Eu

Linear stability analysis is carried out for cylindrical Couette flow of a Lennard–Jones fluid in the density range from the dense liquid to the dilute gas regime. Generalized hydrodynamic equations are used to calculate marginal stability curves and compare them with those obtained by using the Navier–Stokes–Fourier equations for compressible fluids and also for incompressible fluids. In the low Reynolds or Mach number regime, if the Knudsen number is sufficiently low, the marginal stability curves calculated by the generalized hydrodynamic theory coincide, within numerical errors, with those based on the Navier–Stokes theory. But there are considerable deviations between them in the regimes beyond those mentioned earlier, since nonlinear effects manifest themselves in the laminar mean flow through the nonlinear dissipation term and normal stresses. There are three marginal stability curves obtained in contrast to the Navier–Stokes theory, which yields only two. The previously observed phase-transition-like behavior in fluid variables and the slip phenomenon are found to occur beyond the hydrodynamic stability point. The disturbance entropy production associated with the Taylor–Couette vortices is calculated to first order in disturbances in flow variables and is found to decrease as the number of vortices increases and thereby the dynamic structure is progressively more organized.


Sign in / Sign up

Export Citation Format

Share Document