hydrodynamic theory
Recently Published Documents


TOTAL DOCUMENTS

506
(FIVE YEARS 64)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Vol 2022 (1) ◽  
pp. 014002 ◽  
Author(s):  
Jacopo De Nardis ◽  
Benjamin Doyon ◽  
Marko Medenjak ◽  
Miłosz Panfil

Abstract We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear and nonlinear response on top of equilibrium and non-equilibrium states. We consider the problems from the complementary perspectives of the general hydrodynamic theory of many-body systems, including hydrodynamic projections, and form-factor expansions in integrable models, and show how they provide a comprehensive and consistent set of exact methods to extract large scale behaviours. Finally, we overview various applications in integrable spin chains and field theories.


Author(s):  
Da Ke ◽  
Wei Zhong ◽  
Sergey V Dmitriev ◽  
Daxing Xiong

Abstract We develop an effective numerical scheme to capture hydrodynamic modes in general classical anharmonic chains. This scheme is based on the hydrodynamic theory suggested by Ernst-Hauge-van Leeuwen, which takes full role of pressure fluctuations into account. With this scheme we show that the traditional pictures given by the current nonlinear fluctuating hydrodynamic theory are valid only when the system's pressure is zero and the pressure fluctuations are weak. For nonvanishing pressure, the hydrodynamic modes can, however, respond to small and large pressure fluctuations and relax in some distinct manners. Our results shed new light on understanding thermal transport from the perspective of hydrodynamic theory.


2021 ◽  
Vol 2 (4) ◽  
pp. 778-795
Author(s):  
Mark P. Heitz ◽  
Tyler J. Sabo ◽  
Stephanie M. Robillard

Magic angle intensity decay and dynamic fluorescence anisotropy measurements were made on the binary solvent system composed of ethylammonium nitrate ([N2,0,0,0+][NO3−], EAN) + methanol (MeOH) across the complete EAN mole fraction range (xIL = 0–1) using the neutral dipolar solute coumarin 153 (C153) at 295 K. Stokes–Einstein–Debye (SED) hydrodynamic theory was used as a model framework to assess the C153 rotational reorientation dynamics. Departure from stick SED prediction was observed (in contrast to literature reports that used cationic or anionic dyes) and indicated a significant influence of domain nanoheterogeneity on probe dynamics. Steady-state spectroscopy indicated minimal changes in spectral peak and width with mole fraction, except at xIL = 0.3 where absorption widths decreased by ~170 cm−1, signaling that C153 sensed a change in solution heterogeneity. Magic angle intensity decays corroborated the steady-state observation and the excited-state lifetimes showed a marked change from xIL = 0.2–0.4 where EAN-EAN interactions became notably more significant. C153 average rotation times (⟨τrot⟩) showed significant solvent decoupling with increased EAN. The rotational data were fit to a power law dependence, ⟨τrot⟩ ∝ (ηT)p, where p = 0.82, demonstrating the presence of dynamic heterogeneity in the EAN/MeOH solutions. With increased EAN, rotation times showed that the heterogeneity became increasingly more significant since the rotation times systematically decreased away from the hydrodynamic stick limit.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8316
Author(s):  
Hao Li ◽  
Junhua Chen ◽  
Lingjie Bao ◽  
Chuhua Jiang

In this study, a new type of double-pontoon floating breakwater was designed to improve the wave attenuation performance through the addition of suspended Savonius propeller-blade. Its hydrodynamic characteristics were studied through numerical simulations and performance-testing experiment. The following investigations were performed in this study: Firstly, wave theory and hydrodynamic theory were combined to calculate the wave attenuation performance and motion response of double-pontoon floating breakwater under linear wave conditions. The numerical results showed that the wave attenuation performance was better under a specific wave period and height, the transmission coefficient reached a relatively small value, and the mooring line tension responded periodically and satisfied the condition of maximum breaking force. Secondly, three key geometric parameters of breakwater were researched, including the relative spacing of pontoons, the relative spacing between pontoons and blades, and the height–diameter ratio of Savonius blades. The calculation results showed that the pontoon spacing was closer to the wavelength and the breakwater wave attenuation performance was better. Lastly, experimental tests were also performed on the new double-pontoon floating breakwater and the results showed that the wave attenuation performance and numerical projections were basically the same, which verified the validity and effectiveness of the design method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rui Zhou ◽  
Siyuan Gao ◽  
Wei Wang

Based on the granular-solid-hydrodynamic theory, the constitutive model considering the thermo-hydro-mechanical (THM) coupled action is established, and the dilatancy property of sandy soil under coupled high mechanical pressure and temperature is simulated. The relationship between the energy dissipation and the macroscopic stress-strain changes at the grain level of saturated sandy soil is connected by defining the transfer coefficient and the energy function, without considering the concepts of yield surface and hardening parameters in classical plastic mechanics. Additionally, the changes in temperature, relative density and confining pressure during the shearing process cause particle rolling, slipping and friction. The energy dissipation in this process is described by defining the concept of particle entropy and particle temperature. In the calculation, the isotropic compression test, drained and undrained shear test of sandy soil under high stress are simulated respectively. The validity of the model is proved by comparing with the test results. Meanwhile, the stress-strain relationship and pore pressure variation law of sandy soil under different temperatures are predicted. The results show that the effect of temperature on shear strength is limited, and the pore pressure will gradually increase and become stable with the increase of temperature. Thus, this work establishes the soil THM coupled model from the perspective of micro energy dissipation, which can provide new theoretical support for the prediction of natural disasters such as landslides and debris flow.


2021 ◽  
Author(s):  
Birgir Hrafnkelsson ◽  
Helgi Sigurdarson ◽  
Sölvi Rögnvaldsson ◽  
Axel Örn Jansson ◽  
Rafael Daníel Vias ◽  
...  

2021 ◽  
Author(s):  
Viktoriia M. Egorova ◽  
Valery N. Zyryanov ◽  
Mikhail A. Sokolovskiy
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document