Influence of Punch Geometry on Process Parameters in Cold Backward Extrusion

2011 ◽  
Author(s):  
M. Plančak ◽  
B. Barišić ◽  
Z. Car ◽  
D. Movrin ◽  
Francisco Chinesta ◽  
...  
2007 ◽  
Vol 340-341 ◽  
pp. 649-654 ◽  
Author(s):  
Jung Min Seo ◽  
Dong Hwan Jang ◽  
K.H. Min ◽  
H.S. Koo ◽  
S.H. Kim ◽  
...  

Combined extrusion processes generally have advantages of forming in terms of the minimum deformation power since the material is pressed through two or more orifices simultaneously. This paper is concerned with the analysis of forming load characteristics of a forward-backward can extrusion process using thick-walled pipe as an initial billet. The combined tube extrusion process was analyzed by using a commercial finite element code. A thick-walled pipe was selected as an initial billet and the punch geometry has been chosen on the basis of ICFG recommendation. Several tool and process parameters were employed in this analysis and they are punch nose radius, backward tube thickness, punch face angle, and frictional conditions, respectively. The main purpose of this study is to investigate the effect of process parameters on the force requirements in combined extrusion process. The possible extrusion process to form a forward-backward tube parts in different process sequences were also simulated to investigate the force requirements in sequential operations, i.e. separate operations. It was easily concluded from the simulation results that lower forming load was predicted for the combined extrusion, compared to those for separate sequential operations. It was also revealed that the punch nose radius and the punch face angle have little effect on the force requirements and the forming load increases significantly as the frictional condition along tool-workpiece interface becomes severe. The simulation results in this study suggest that the combined extrusion process has strong advantage in terms of force requirements as long as the simultaneous material flow into multiple orifices could be closely controlled.


2015 ◽  
Vol 651-653 ◽  
pp. 381-386
Author(s):  
Samir Allaoui ◽  
Gilles Hivet ◽  
Christophe Cellard

During forming, defects can occur and have to be taken into account because they can significantly affect the mechanical performance of the part. This experimental study shows the type and number of defects is a function of the punch geometry, the process parameters, the orientation of the fabric with respect to the punch and the inter-ply friction. Inter-ply friction has a huge effect on the quality of the preform when inter-ply sliding occurs. This inter-ply Friction leads to several overhanging yarn shocks that generate high tangential forces, which inhibit the relative sliding of plies.


Sign in / Sign up

Export Citation Format

Share Document