hard coatings
Recently Published Documents


TOTAL DOCUMENTS

1336
(FIVE YEARS 178)

H-INDEX

68
(FIVE YEARS 6)

2022 ◽  
Vol 17 (1) ◽  
pp. 1-8
Author(s):  
Ryo Koike ◽  
Atsushi Suzuki ◽  
Kazue Kurihara ◽  
Koshi Adachi
Keyword(s):  

Wear ◽  
2022 ◽  
Vol 488-489 ◽  
pp. 204124
Author(s):  
Edward H. Williamson ◽  
Mark Gee ◽  
Daniel Robertson ◽  
John F. Watts ◽  
Mark J. Whiting ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1565
Author(s):  
Haijuan Mei ◽  
Jicheng Ding ◽  
Junfeng Zhao ◽  
Ting Wang ◽  
Kaijian Huang ◽  
...  

As an important high-power impulse magnetron sputtering (HIPIMS) parameter, charge voltage has a significant influence on the microstructure and properties of hard coatings. In this work, the Mo–Cu–V–N coatings were prepared at various charge voltages using HIPIMS technique to study their mechanical and tribological properties. The microstructure was analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The mechanical and tribological properties were investigated by nano-indentation and ball-on-disc tribometer. The results revealed that all the coatings showed a solid-solution phase of B1-MoVN, the V atoms dissolved into face-centered cubic (FCC) B1-MoN lattice by partial substitution of Mo, and formed a solid-solution phase. Even at a high Cu content (~8.8 at. %), the Cu atoms existed as an amorphous phase. When the charge voltage increased, more energy was put into discharge, and the microstructure changed from coarse structure into dense columnar structure, resulting in the highest hardness of 28.2 GPa at 700 V. An excellent wear performance with low friction coefficient of 0.32 and wear rate of 6.3 × 10−17 m3/N·m was achieved at 750 V, and the wear mechanism was dominated by mild abrasive and tribo-oxidation wear.


2021 ◽  
Author(s):  
Anwar Ul-Hamid

Abstract Nitrides, carbides, and carbonitrides of transition metal elements like Zr, W, Ti, etc. are generally employed to produce hard coatings. Zirconium-based hard coatings have shown useful applications in the areas of tribology, biomedicine and electrical due to their high thermal stability, hardness, biocompatibility, good erosion, wear, and corrosion resistance. In this study, we created homogeneous and tenacious nanostructured hard coatings based on Zr with good mechanical properties. The magnetron sputter deposition technique was utilized to coat stainless steel 316L substrates with multilayers of Zr/ZrN and ZrN/ZrCN with individual layer thicknesses of 250 and 500 nm for each coating composition. The deposition conditions were adjusted to create two different coating thicknesses of 2 and 3 µm. The thickness of the coating was confirmed using Calotest and the coatings’ morphology and elemental composition were determined utilizing the atomic force microscope and scanning electron microscope equipped with energy dispersive x-ray spectrometer. Coating thickness and adhesion were measured using cross-sectional samples and XRD was utilized to analyze the coatings structure. Nanoindenter was employed to determine the instrumental nanoindentation hardness and elastic modulus. The influence of coating thickness on tribological behavior was further investigated using the ratio of nanohardness-to-elastic modulus (H/E). No evidence of decohesion was observed at the substrate/coatings interface, and the grains of all the coatings were observed to show columnar growth which were homogeneous, compact and dense. The grains of the ZrN/ZrCN coatings were observed to be denser, finer and more compact compared to those of the Zr/ZrN coatings. Correspondingly, higher hardness, modulus and H/E values were exhibited by ZrN/ZrCN than Zr/ZrN coatings. This suggests that the ZrN/ZrCN coatings are capable of exhibiting better wear resistance and fracture toughness. The coatings developed in this investigation are anticipated to be suitable for applications in tribology due to their excellent hardness and H/E properties.


2021 ◽  
Vol 41 (12) ◽  
pp. 1131-1134
Author(s):  
V. A. Korotkov

2021 ◽  
pp. 163478
Author(s):  
Engin KOCAMAN ◽  
Bülent KILINÇ ◽  
Şaduman ŞEN ◽  
Uğur ŞEN
Keyword(s):  

2021 ◽  
Vol 105 (1) ◽  
pp. 309-318
Author(s):  
Chien Nguyen ◽  
Emil Svoboda ◽  
Jan Sedlacek ◽  
Josef Sedlak ◽  
Ales Polzer ◽  
...  

This study was conducted to investigate the effect of hybrid surface treatment composed of plasma nitriding (PN) and chromium nitride (CrN) coating on the friction-wear properties, the adhesion strength of AISI 316L stainless steel. The CrN coatings with the thickness of 1.0 µm and 2.2 µm were formed on the surfaces of both substrates with plasma nitriding (PN/CrN coating) and without plasma nitriding (CrN coating). The plasma nitriding, CrN coatings, and the hybrid treatment improved markedly the friction-wear properties of the stainless steel. The plasma nitriding generated a hardened layer between the soft substrate and the thin hard coatings and improved markedly friction-wear properties of the CrN-coated stainless steel and the adhesion of the CrN coatings.


2021 ◽  
Vol 34 ◽  
Author(s):  
Miguel Angel Santana-Aranda

Professor Orlando Zelaya Angel was an outstanding member of the research community on Solid State Physics. He served as President to the Sociedad Mexicana de Ciencia de Superficies y Vacío (SMCSyV; currently Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales – SMCTSM), for the period 1995-1996. Professor Zelaya formed many researchers in Mexico, who continue developing research, either in Mexico, in their countries of origin, or abroad. Throughout the evolution of Superficies y Vacío, Professor Zelaya, contributed with sixteen articles on subjects ranging from thin films for optoelectronic applications, through hard coatings and studies on the process for production of Tortillas; covering most of his research areas of interest. Here is a subject-chronological compilation of the abstracts to his articles in Superficies y Vacío, after a year of his departure.


Sign in / Sign up

Export Citation Format

Share Document