Reverse nonequilibrium molecular dynamics simulation of thermal conductivity in nanoconfined polyamide-6,6

2011 ◽  
Vol 135 (6) ◽  
pp. 064703 ◽  
Author(s):  
Hossein Eslami ◽  
Laila Mohammadzadeh ◽  
Nargess Mehdipour
2015 ◽  
Vol 1727 ◽  
Author(s):  
M. Rifu ◽  
K. Shintani

ABSTRACTThe thermal conductivities of pillared-graphene nanostructures (PGNSs) are obtained using nonequilibrium molecular-dynamics simulation. It is revealed their thermal conductivities are much smaller than the thermal conductivities of carbon nanotubes (CNTs). This fact is explained by examining the density of states (DOS) of the local phonons of PGNSs. It is also found the thermal conductivity of a PGNS linearly decreases with the increase of the inter-pillar distance.


Author(s):  
Z. Wei ◽  
Z. Ni ◽  
K. Bi ◽  
J. Wang ◽  
Y. Chen

The thermal conductivity of graphene nanoribbons was investigated with nonequilibrium molecular dynamics simulation methods. The results show that the thermal conductivity of nanoribbons lined with zig-zag edges is higher than that with arm-chair edges for the samples with the same width. The phonon density of states is extracted from the molecular dynamics simulation to quantitatively explain the difference between the thermal conductivities of the two kind nanoribbons. The effects of vacancy on the thermal conductivity of nanoribbons are also investigated and it is found the defects on the edge zone play little role than that located in the interior zone of nanoribbons in reducing thermal conductivities.


Sign in / Sign up

Export Citation Format

Share Document