si nanostructures
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 38)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Chanchal Rani ◽  
Manushree Tanwar ◽  
Tanushree Ghosh ◽  
Suchita Kandpal ◽  
Devesh K. Pathak ◽  
...  

Effect of oxidizer, present in the etching solution, on the surface morphology and microstructure obtained after porosification of p-type silicon wafer using metal assisted chemical etching has been studied here. The morphologies of Si wafers porosified using two different solutions namely HF/ H2O2 and HF/KMnO4 have been compared to establish how either of the oxidizers (H2O2 or KMnO4) should be chosen depending on the desired application. The comparative study reveals that either parallel pores with wire like structures or interconnected pores with cheese like structures can be obtained when H2O2 or KMnO4 respectively are chosen. Careful analysis of SEM images has been carried out using ImageJ to establish that samples prepared using KMnO4 are more porous due to aggressive etching. Additionally, experimental and theoretical Raman spectroscopic studies have been utilized to study the presence of low dimensional Si nanostructures of a few nanomaters size at the microscopic level in the porosified silicon.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6582
Author(s):  
José Juan Avilés Bravo ◽  
Santiago Antonio Cabañas Tay ◽  
Liliana Palacios Huerta ◽  
Karla Esther González Flores ◽  
Javier Flores Méndez ◽  
...  

Two multilayer (ML) structures, composed of five layers of silicon-rich oxide (SRO) with different Si contents and a sixth layer of silicon-rich nitride (SRN), were deposited by low pressure chemical vapor deposition. These SRN/SRO MLs were thermally annealed at 1100 °C for 180 min in ambient N2 to induce the formation of Si nanostructures. For the first ML structure (MLA), the excess Si in each SRO layer was about 10.7 ± 0.6, 9.1 ± 0.4, 8.0 ± 0.2, 9.1 ± 0.3 and 9.7 ± 0.4 at.%, respectively. For the second ML structure (MLB), the excess Si was about 8.3 ± 0.2, 10.8 ± 0.4, 13.6 ± 1.2, 9.8 ± 0.4 and 8.7 ± 0.1 at.%, respectively. Si nanopyramids (Si-NPs) were formed in the SRO/Si substrate interface when the SRO layer with the highest excess silicon (10.7 at.%) was deposited next to the MLA substrate. The height, base and density of the Si-NPs was about 2–8 nm, 8–26 nm and ~6 × 1011 cm−2, respectively. In addition, Si nanocrystals (Si-ncs) with a mean size of between 3.95 ± 0.20 nm and 2.86 ± 0.81 nm were observed for the subsequent SRO layers. Meanwhile, Si-NPs were not observed when the excess Si in the SRO film next to the Si-substrate decreased to 8.3 ± 0.2 at.% (MLB), indicating that there existed a specific amount of excess Si for their formation. Si-ncs with mean size of 2.87 ± 0.73 nm and 3.72 ± 1.03 nm were observed for MLB, depending on the amount of excess Si in the SRO film. An enhanced photoluminescence (PL) emission (eight-fold more) was observed in MLA as compared to MLB due to the presence of the Si-NPs. Therefore, the influence of graded silicon content in SRN/SRO multilayer structures on the formation of Si-NPs and Si-ncs, and their relation to the PL emission, was analyzed.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012160
Author(s):  
N Ustimenko ◽  
K V Baryshnikova ◽  
R Melnikov ◽  
D Kornovan ◽  
V Ulyantsev ◽  
...  

Abstract Metalens is a planar device for light focusing. In this work, we design and optimize c-Si nanosphere metalenses working on the magnetic dipole and quadrupole resonances of the c-Si nanoparticle. Resonant optical response of c-Si nanostructures is simulated by the multipole decomposition method along with the zero-order Born approximation. Limitations of this approach are investigated. The obtained results of optimization are verified by simulation via the T-matrix method.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2806
Author(s):  
Rabia Akan ◽  
Ulrich Vogt

High-aspect ratio silicon (Si) nanostructures are important for many applications. Metal-assisted chemical etching (MACE) is a wet-chemical method used for the fabrication of nanostructured Si. Two main challenges exist with etching Si structures in the nanometer range with MACE: keeping mechanical stability at high aspect ratios and maintaining a vertical etching profile. In this work, we investigated the etching behavior of two zone plate catalyst designs in a systematic manner at four different MACE conditions as a function of mechanical stability and etching verticality. The zone plate catalyst designs served as models for Si nanostructures over a wide range of feature sizes ranging from 850 nm to 30 nm at 1:1 line-to-space ratio. The first design was a grid-like, interconnected catalyst (brick wall) and the second design was a hybrid catalyst that was partly isolated, partly interconnected (fishbone). Results showed that the brick wall design was mechanically stable up to an aspect ratio of 30:1 with vertical Si structures at most investigated conditions. The fishbone design showed higher mechanical stability thanks to the Si backbone in the design, but on the other hand required careful control of the reaction kinetics for etching verticality. The influence of MACE reaction kinetics was identified by lowering the oxidant concentration, lowering the processing temperature and by isopropanol addition. We report an optimized MACE condition to achieve an aspect ratio of at least 100:1 at room temperature processing by incorporating isopropanol in the etching solution.


2021 ◽  
Author(s):  
Jeffery Alexander Powell

Raman spectroscopy is a powerful tool for detection of chemical and bioanalytes but lacks enhancement required to detect these analytes at the ultrahigh sensitivity needed for many applications. Surface enhanced Raman Scattering is a technique by which an analyte signal can become greatly enhanced and, near single molecule sensitivity, is achievable. Currently, SERS-based detection platforms currently rely on noble metal nanostructures as primary enhancing sources for the detection of chemical and bioanalytes but have significant limitations in terms of reproducibility and biocompatibility. Recent research has shown that semiconductors have the ability to exhibit SERS enhancing characteristics that can potentially supplant the use of noble metals without the limitations associated with noble metal nanomaterials. This thesis presents, the generation of three-dimensional self-assembled hybrid silicon nanostructures though a laser-ion plume formation mechanism. These Si nanostructures exhibit high sensitivity SERS enhancement characteristics which can be applied for chemical and biosensing applications. In this thesis, the Raman enhancing characteristics of the hybrid Si nanostructures are examined and correlated to the unique physical morphology and material chemistry of these nanostructures. These Si nanostructures are shown to be comprised of individual Si nanospheroids that have fused to form a highly 3D nanoweb-like self-assembled nanostructures. It is also shown that these nanospheroids are composed of both amorphous and polycrystalline sub-regions, which can only be generated within an ion-plume formed by a femtosecond pulsed laser. By programming the laser, the nanostructure morphology and hybrid nature can be manipulated and optimized. These Si nanostructures are shown to be highly sensitive as SERS platforms for chemical analytes. In addition, it is shown that with the application of noble metal nanoparticles on the surface of the 3D hybrid silicon nanowebs structures, an additional enhancement boost can be optimized for the detection of chemical molecules. With this, the dual contribution to the SERS sensitivity from both the primary Si nanostructures and the secondary noble metal nanostructures can be used to detect the presence of a biomolecule analyte is shown. To delve deeper into how these hybrid Si nanostructures cause SERS enhancement of bioanalytes, the Si ion interactions within the laser-ion plume were manipulated to induce quantum-scale defects within the hybrid Si nanospheroids. By creating both an inert and oxygenated laser-ion plumes the formation of sub-nanograins within the nanospheroids and sub-nanovoids on the nanospheroid surface is shown to significantly enhance the detection of bioanalyte signal for multiple biomolecules which act as signals for various diseases. Based on the results in this thesis, it has been proven that Si-based nanostructures have the capacity to be used as sole SERS enhancing sources for chemical and biomolecule analytes.


2021 ◽  
Author(s):  
Jeffery Alexander Powell

Raman spectroscopy is a powerful tool for detection of chemical and bioanalytes but lacks enhancement required to detect these analytes at the ultrahigh sensitivity needed for many applications. Surface enhanced Raman Scattering is a technique by which an analyte signal can become greatly enhanced and, near single molecule sensitivity, is achievable. Currently, SERS-based detection platforms currently rely on noble metal nanostructures as primary enhancing sources for the detection of chemical and bioanalytes but have significant limitations in terms of reproducibility and biocompatibility. Recent research has shown that semiconductors have the ability to exhibit SERS enhancing characteristics that can potentially supplant the use of noble metals without the limitations associated with noble metal nanomaterials. This thesis presents, the generation of three-dimensional self-assembled hybrid silicon nanostructures though a laser-ion plume formation mechanism. These Si nanostructures exhibit high sensitivity SERS enhancement characteristics which can be applied for chemical and biosensing applications. In this thesis, the Raman enhancing characteristics of the hybrid Si nanostructures are examined and correlated to the unique physical morphology and material chemistry of these nanostructures. These Si nanostructures are shown to be comprised of individual Si nanospheroids that have fused to form a highly 3D nanoweb-like self-assembled nanostructures. It is also shown that these nanospheroids are composed of both amorphous and polycrystalline sub-regions, which can only be generated within an ion-plume formed by a femtosecond pulsed laser. By programming the laser, the nanostructure morphology and hybrid nature can be manipulated and optimized. These Si nanostructures are shown to be highly sensitive as SERS platforms for chemical analytes. In addition, it is shown that with the application of noble metal nanoparticles on the surface of the 3D hybrid silicon nanowebs structures, an additional enhancement boost can be optimized for the detection of chemical molecules. With this, the dual contribution to the SERS sensitivity from both the primary Si nanostructures and the secondary noble metal nanostructures can be used to detect the presence of a biomolecule analyte is shown. To delve deeper into how these hybrid Si nanostructures cause SERS enhancement of bioanalytes, the Si ion interactions within the laser-ion plume were manipulated to induce quantum-scale defects within the hybrid Si nanospheroids. By creating both an inert and oxygenated laser-ion plumes the formation of sub-nanograins within the nanospheroids and sub-nanovoids on the nanospheroid surface is shown to significantly enhance the detection of bioanalyte signal for multiple biomolecules which act as signals for various diseases. Based on the results in this thesis, it has been proven that Si-based nanostructures have the capacity to be used as sole SERS enhancing sources for chemical and biomolecule analytes.


2021 ◽  
pp. 122254
Author(s):  
Farah Nadiah Nordin ◽  
Mahdi Alizadeh ◽  
Hideki Nakajima ◽  
Sarayut Tunmee ◽  
Mei Yuen Chia ◽  
...  

2021 ◽  
Author(s):  
Luma Z. Mohammed ◽  
Makram A Fakhri ◽  
A. K. Abass ◽  
Evan T. Salim

Abstract A Mach-Zehnder electro-optic modulator (EOM) was fabricated employing pulsed laser deposition (PLD) method. Lithium Niobate (LN) was bonded to silicon nanocrystal substrate such that a waveguide combined structures were obtained. The over-all Properties of prepared device were investigated. The formation of LN was ensured by the x-ray diffraction results were the formation of ∆ phase was confirmed by the diffraction of x-rays from the (012) and (302) diffraction plans. The AFM results reflect the formation of highly uniform nanostructured with maximum roughness of about 12.9 nm. The constructed device shows that the recent improvements in hybrid MZ modulators using pulse laser deposition PLD and different electro-optic material have shown low loss and wide modulation bandwidth.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 383
Author(s):  
Antonio Alessio Leonardi ◽  
Maria José Lo Faro ◽  
Alessia Irrera

Silicon is the undisputed leader for microelectronics among all the industrial materials and Si nanostructures flourish as natural candidates for tomorrow’s technologies due to the rising of novel physical properties at the nanoscale. In particular, silicon nanowires (Si NWs) are emerging as a promising resource in different fields such as electronics, photovoltaic, photonics, and sensing. Despite the plethora of techniques available for the synthesis of Si NWs, metal-assisted chemical etching (MACE) is today a cutting-edge technology for cost-effective Si nanomaterial fabrication already adopted in several research labs. During these years, MACE demonstrates interesting results for Si NW fabrication outstanding other methods. A critical study of all the main MACE routes for Si NWs is here presented, providing the comparison among all the advantages and drawbacks for different MACE approaches. All these fabrication techniques are investigated in terms of equipment, cost, complexity of the process, repeatability, also analyzing the possibility of a commercial transfer of these technologies for microelectronics, and which one may be preferred as industrial approach.


Sign in / Sign up

Export Citation Format

Share Document