Experimental Measurement of Low Energy Neutrino Interactions

2011 ◽  
Author(s):  
Kate Scholberg ◽  
S. K. Singh ◽  
J. G. Morfin ◽  
Makoto Sakuda ◽  
K. D. Purohit
1982 ◽  
pp. 241-257
Author(s):  
Henry W. Sobel ◽  
Frederick Reines ◽  
Elaine Pasierb

2021 ◽  
Vol 16 (12) ◽  
pp. C12003
Author(s):  
G. de Wasseige

Abstract KM3NeT, a new generation of neutrino telescope, is currently being deployed in the Mediterranean Sea. While its two sites, ORCA and ARCA, were respectively designed for the determination of neutrino mass hierarchy and high-energy neutrino astronomy, this contribution presents a study of the detection potential of KM3NeT in the MeV-GeV energy range. At these low energies, the data rate is dominated by low-energy atmospheric muons and environmental noise due to bioluminescence and K-40 decay. The goal of this study is to characterize the environmental noise in order to optimize the selection of low-energy neutrino interactions and increase the sensitivity of KM3NeT to transient astrophysical phenomena, such as close-by core-collapse supernovae, solar flares, and extragalactic transients. In this contribution, we will study how using data science tools might improve the sensitivity of KM3NeT in these low-energy neutrino searches. We will first introduce the data sets and the different variables used to characterize KM3NeT’s response to the environmental noise. We will then compare the efficiency of various tools in identifying different components in the environmental noise and in disentangling low-energy neutrino interactions from the background events. We will conclude with the implication of low-energy neutrinos for future astrophysical transient searches.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kevin J. Kelly ◽  
Pedro A. N. Machado ◽  
Alberto Marchionni ◽  
Yuber F. Perez-Gonzalez

Abstract We propose the operation of LEvEL, the Low-Energy Neutrino Experiment at the LHC, a neutrino detector near the Large Hadron Collider Beam Dump. Such a detector is capable of exploring an intense, low-energy neutrino flux and can measure neutrino cross sections that have previously never been observed. These cross sections can inform other future neutrino experiments, such as those aiming to observe neutrinos from supernovae, allowing such measurements to accomplish their fundamental physics goals. We perform detailed simulations to determine neutrino production at the LHC beam dump, as well as neutron and muon backgrounds. Measurements at a few to ten percent precision of neutrino-argon charged current and neutrino-nucleus coherent scattering cross sections are attainable with 100 ton-year and 1 ton-year exposures at LEvEL, respectively, concurrent with the operation of the High Luminosity LHC. We also estimate signal and backgrounds for an experiment exploiting the forward direction of the LHC beam dump, which could measure neutrinos above 100 GeV.


Sign in / Sign up

Export Citation Format

Share Document