neutrino production
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 39)

H-INDEX

29
(FIVE YEARS 3)

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1098-1111
Author(s):  
Michael Zacharias

The recent associations of neutrinos with blazars require the efficient interaction of relativistic protons with ambient soft photon fields. However, along side the neutrinos, γ-ray photons are produced, which interact with the same soft photon fields producing electron-positron pairs. The strength of this cascade has significant consequences on the photon spectrum in various energy bands and puts severe constraints on the pion and neutrino production. In this study, we discuss the influence of the external thermal photon fields (accretion disk, broad-line region, and dusty torus) on the proton-photon interactions, employing a newly developed time-dependent one-zone hadro-leptonic code OneHaLe. We present steady-state cases, as well as a time-dependent case, where the emission region moves through the jet. Within the limits of this toy study, the external fields can disrupt the “usual” double-humped blazar spectrum. Similarly, a moving region would cross significant portions of the jet without reaching the previously-found steady states.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Adam Falkowski ◽  
Martín González-Alonso ◽  
Joachim Kopp ◽  
Yotam Soreq ◽  
Zahra Tabrizi

Abstract We investigate the sensitivity of the FASERν detector to new physics in the form of non-standard neutrino interactions. FASERν, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism — which is applicable to any current and future neutrino experiment — is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASERν will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASERν constraints will become comparable to existing limits — some of them derived for the first time in this paper — already with 150 fb−1 of data.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 354
Author(s):  
Alberto Salvio ◽  
Simone Scollo

Extending the standard model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the aνMSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential, we show that DM cannot receive a contribution from primordial black holes in the aνMSM. This leads to a multicomponent axion–sterile neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kevin J. Kelly ◽  
Pedro A. N. Machado ◽  
Alberto Marchionni ◽  
Yuber F. Perez-Gonzalez

Abstract We propose the operation of LEvEL, the Low-Energy Neutrino Experiment at the LHC, a neutrino detector near the Large Hadron Collider Beam Dump. Such a detector is capable of exploring an intense, low-energy neutrino flux and can measure neutrino cross sections that have previously never been observed. These cross sections can inform other future neutrino experiments, such as those aiming to observe neutrinos from supernovae, allowing such measurements to accomplish their fundamental physics goals. We perform detailed simulations to determine neutrino production at the LHC beam dump, as well as neutron and muon backgrounds. Measurements at a few to ten percent precision of neutrino-argon charged current and neutrino-nucleus coherent scattering cross sections are attainable with 100 ton-year and 1 ton-year exposures at LEvEL, respectively, concurrent with the operation of the High Luminosity LHC. We also estimate signal and backgrounds for an experiment exploiting the forward direction of the LHC beam dump, which could measure neutrinos above 100 GeV.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Vincenzo Cirigliano ◽  
Wouter Dekens ◽  
Jordy de Vries ◽  
Kaori Fuyuto ◽  
Emanuele Mereghetti ◽  
...  

Abstract We investigate contributions to the anomalous magnetic moments of charged leptons in the neutrino-extended Standard Model Effective Field Theory (νSMEFT). We discuss how νSMEFT operators can contribute to a lepton’s magnetic moment at one- and two-loop order. We show that only one operator can account for existing electronic and muonic discrepancies, assuming new physics appears above 1 TeV. In particular, we find that a right-handed charged current in combination with minimal sterile-active mixing can explain the discrepancy for sterile neutrino masses of $$ \mathcal{O} $$ O (100) GeV while avoiding direct and indirect constraints. We discuss how searches for sterile neutrino production at the (HL-)LHC, measurements of h→μ+μ− and searches for h→e+e−, neutrinoless double beta decay experiments, and improved unitarity tests of the CKM matrix can further probe the relevant parameter space.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Pilar Coloma ◽  
Jacobo López-Pavón ◽  
Salvador Rosauro-Alcaraz ◽  
Salvador Urrea

Abstract We study the capabilities of the DUNE near detector to probe deviations from unitarity of the leptonic mixing matrix, the 3+1 sterile formalism and Non-Standard Interactions affecting neutrino production and detection. We clarify the relation and possible mappings among the three formalisms at short-baseline experiments, and we add to current analyses in the literature the study of the νμ→ ντ appearance channel. We study in detail the impact of spectral uncertainties on the sensitivity to new physics using the DUNE near detector, which has been widely overlooked in the literature. Our analysis shows that this plays an important role on the results and, in particular, that it can lead to a strong reduction in the sensitivity to sterile neutrinos from νμ→ νe transitions, by more than two orders of magnitude. This stresses the importance of a joint experimental and theoretical effort to improve our understanding of neutrino nucleus cross sections, as well as hadron production uncertainties and beam focusing effects. Nevertheless, even with our conservative and more realistic implementation of systematic uncertainties, we find that an improvement over current bounds in the new physics frameworks considered is generally expected if spectral uncertainties are below the 5% level.


2021 ◽  
Author(s):  
Saqib Hussain ◽  
Rafael Alves Batista ◽  
Elisabete de Gouveia Dal Pino ◽  
Klaus Dolag

2021 ◽  
Vol 2021 (07) ◽  
pp. 028
Author(s):  
Damiano F.G. Fiorillo ◽  
Arjen van Vliet ◽  
Stefano Morisi ◽  
Walter Winter

Sign in / Sign up

Export Citation Format

Share Document