astrophysical neutrinos
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 54)

H-INDEX

23
(FIVE YEARS 5)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Celio A. Moura ◽  
Fernando Rossi-Torres

Neutrinos are a powerful tool for searching physics beyond the standard model of elementary particles. In this review, we present the status of the research on charge-parity-time (CPT) symmetry and Lorentz invariance violations using neutrinos emitted from the collapse of stars such as supernovae and other astrophysical environments, such as gamma-ray bursts. Particularly, supernova neutrino fluxes may provide precious information because all neutrino and antineutrino flavors are emitted during a burst of tens of seconds. Models of quantum gravity may allow the violation of Lorentz invariance and possibly of CPT symmetry. Violation of Lorentz invariance may cause a modification of the dispersion relation and, therefore, in the neutrino group velocity as well in the neutrino wave packet. These changes can affect the arrival time signal registered in astrophysical neutrino detectors. Direction or time-dependent oscillation probabilities and anisotropy of the neutrino velocity are manifestations of the same kind of new physics. CPT violation, on the other hand, may be responsible for different oscillation patterns for neutrino and antineutrino and unconventional energy dependency of the oscillation phase or of the mixing angles. Future perspectives for possible CPT and Lorentz violating systems are also presented.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 492
Author(s):  
Paolo Giommi ◽  
Paolo Padovani

We review and discuss recent results on the search for correlations between astrophysical neutrinos and γ-ray-detected sources, with many extragalactic studies reporting potential associations with different types of blazars. We investigate possible dependencies on blazar sub-classes by using the largest catalogues and all the multi-frequency data available. Through the study of similarities and differences in these sources we conclude that blazars come in two distinct flavours: LBLs and IHBLs (low-energy-peaked and intermediate-high-energy-peaked objects). These are distinguished by widely different properties such as the overall spectral energy distribution shape, jet speed, cosmological evolution, broad-band spectral variability, and optical polarisation properties. Although blazars of all types have been proposed as neutrino sources, evidence is accumulating in favour of IHBLs being the counterparts of astrophysical neutrinos. If this is indeed the case, we argue that the peculiar observational properties of IHBLs may be indirectly related to proton acceleration to very high energies.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 490
Author(s):  
Carlos A. Argüelles ◽  
Teppei Katori

The search of the violation of Lorentz symmetry, or Lorentz violation (LV), is an active research field. The effects of LV are expected to be very small, and special systems are often used to search it. High-energy astrophysical neutrinos offer a unique system to search signatures of LV, due to the three factors: high neutrino energy, long propagation distance, and the presence of quantum mechanical interference. In this brief review, we introduce tests of LV and summarize existing searches of LV, using atmospheric and astrophysical neutrinos.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Ivan Esteban ◽  
Sujata Pandey ◽  
Vedran Brdar ◽  
John F. Beacom

2021 ◽  
Vol 16 (12) ◽  
pp. C12012
Author(s):  
G. de Wasseige

Abstract While large neutrino telescopes have so far mainly focused on the detection of TeV-PeV astrophysical neutrinos, several efforts are ongoing to extend the sensitivity down to the GeV level for transient sources. Only a handful of neutrino searches have been carried out at the moment leaving the signature of astrophysical transients poorly known in this energy range. In this contribution, we discuss the motivations for high-energy neutrino telescopes to explore the GeV energy range and summarize the current limitations of detectors, such as IceCube and KM3NeT. We then present and compare different approaches for multi-detector analyses that may enhance the sensitivity to a transient GeV neutrino flux.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
C. J. Lozano Mariscal ◽  
L. Classen ◽  
M. A. Unland Elorrieta ◽  
A. Kappes

AbstractNew optical sensors with a segmented photosensitive area are being developed for the next generation of neutrino telescopes at the South Pole. In addition to increasing sensitivity to high-energy astrophysical neutrinos, we show that this will also lead to a significant improvement in sensitivity to MeV neutrinos, such as those produced in core-collapse supernovae (CCSN). These low-energy neutrinos can provide a detailed picture of the events after stellar core collapse, testing our understanding of these violent explosions. We present studies on the event-based detection of MeV neutrinos with a segmented sensor and, for the first time, the potential of a corresponding detector in the deep ice at the South Pole for the detection of extra-galactic CCSN. We find that exploiting temporal coincidences between signals in different photocathode segments, a $$27\ \mathrm {M}_{\odot }$$ 27 M ⊙ progenitor mass CCSN can be detected up to a distance of 341 kpc with a false detection rate of $${0.01}\,\hbox {year}^{-1}$$ 0.01 year - 1 with a detector consisting of 10,000 sensors. Increasing the number of sensors to 20,000 and reducing the optical background by a factor of 70 expands the range such that a CCSN detection rate of 0.1 per year is achieved, while keeping the false detection rate at $${0.01}\,{\hbox {year}^{-1}}$$ 0.01 year - 1 .


2021 ◽  
Vol 16 (12) ◽  
pp. C12003
Author(s):  
G. de Wasseige

Abstract KM3NeT, a new generation of neutrino telescope, is currently being deployed in the Mediterranean Sea. While its two sites, ORCA and ARCA, were respectively designed for the determination of neutrino mass hierarchy and high-energy neutrino astronomy, this contribution presents a study of the detection potential of KM3NeT in the MeV-GeV energy range. At these low energies, the data rate is dominated by low-energy atmospheric muons and environmental noise due to bioluminescence and K-40 decay. The goal of this study is to characterize the environmental noise in order to optimize the selection of low-energy neutrino interactions and increase the sensitivity of KM3NeT to transient astrophysical phenomena, such as close-by core-collapse supernovae, solar flares, and extragalactic transients. In this contribution, we will study how using data science tools might improve the sensitivity of KM3NeT in these low-energy neutrino searches. We will first introduce the data sets and the different variables used to characterize KM3NeT’s response to the environmental noise. We will then compare the efficiency of various tools in identifying different components in the environmental noise and in disentangling low-energy neutrino interactions from the background events. We will conclude with the implication of low-energy neutrinos for future astrophysical transient searches.


2021 ◽  
Vol 16 (11) ◽  
pp. C11002
Author(s):  
C. Bellenghi ◽  
T. Glauch ◽  
C. Haack ◽  
T. Kontrimas ◽  
H. Niederhausen ◽  
...  

Abstract The IceCube Neutrino Observatory, a cubic kilometer scale Cherenkov detector deployed in the deep ice at the geographic South Pole, investigates extreme astrophysical phenomena by studying the corresponding high-energy neutrino signal. Its discovery of a diffuse flux of astrophysical neutrinos with energies up to the PeV scale in 2013 has triggered a vast effort to identify the mostly unknown sources of these high energy neutrinos. Here, we present a new IceCube point-source search that improves the accuracy of the statistical analysis, especially at energies of a few TeV and below. The new approach is based on multidimensional kernel density estimation for the probability density functions and new estimators for the observables, namely the reconstructed energy and the estimated angular uncertainty on the reconstructed arrival direction. The more accurate analysis provides an improvement in discovery potential up to ∼30% over previous works for hard spectrum sources.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
V. A. Allakhverdyan ◽  
A. D. Avrorin ◽  
A. V. Avrorin ◽  
V. M. Aynutdinov ◽  
R. Bannasch ◽  
...  

AbstractThe Baikal Gigaton Volume Detector (Baikal-GVD) is a km$$^3$$ 3 -scale neutrino detector currently under construction in Lake Baikal, Russia. The detector consists of several thousand optical sensors arranged on vertical strings, with 36 sensors per string. The strings are grouped into clusters of 8 strings each. Each cluster can operate as a stand-alone neutrino detector. The detector layout is optimized for the measurement of astrophysical neutrinos with energies of $$\sim $$ ∼ 100 TeV and above. Events resulting from charged current interactions of muon (anti-)neutrinos will have a track-like topology in Baikal-GVD. A fast $$\chi ^2$$ χ 2 -based reconstruction algorithm has been developed to reconstruct such track-like events. The algorithm has been applied to data collected in 2019 from the first five operational clusters of Baikal-GVD, resulting in observations of both downgoing atmospheric muons and upgoing atmospheric neutrinos. This serves as an important milestone towards experimental validation of the Baikal-GVD design. The analysis is limited to single-cluster data, favoring nearly-vertical tracks.


Sign in / Sign up

Export Citation Format

Share Document