A quantum‐statistical Monte Carlo method; path integrals with boundary conditions

1979 ◽  
Vol 70 (6) ◽  
pp. 2914-2918 ◽  
Author(s):  
J. A. Barker
1998 ◽  
Vol 120 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Masato Ikegawa ◽  
Jun’ichi Kobayashi ◽  
Morihisa Maruko

As integrated circuits are advancing toward smaller device features, step-coverage in submicron trenches and holes in thin film deposition are becoming of concern. Deposition consists of gas flow in the vapor phase and film growth in the solid phase. A deposition profile simulator using the direct simulation Monte Carlo method has been developed to investigate deposition profile characteristics on small trenches which have nearly the same dimension as the mean free path of molecules. This simulator can be applied to several deposition processes such as sputter deposition, and atmospheric- or low-pressure chemical vapor deposition. In the case of low-pressure processes such as sputter deposition, upstream boundary conditions of the trenches can be calculated by means of rarefied gas flow analysis in the reactor. The effects of upstream boundary conditions, molecular collisions, sticking coefficients, and surface migration on deposition profiles in the trenches were clarified.


1993 ◽  
Vol 04 (05) ◽  
pp. 1041-1048 ◽  
Author(s):  
CESARE CHICCOLI ◽  
PAOLO PASINI ◽  
FRANCO SEMERIA ◽  
CLAUDIO ZANNONI

A Monte Carlo method with boundary conditions of a self-consistent maximum entropy type has been applied to the classical Heisenberg model.


1998 ◽  
Vol 13 (21) ◽  
pp. 3723-3747 ◽  
Author(s):  
ANDERS KRISTOFFERSEN ◽  
STEFAN MASHKEVICH ◽  
JAN MYRHEM ◽  
KÅRE OLAUSSEN

We have computed by a Monte Carlo method the fourth virial coefficient of free anyons, as a function of the statistics angle θ. It can be fitted by a four term Fourier series, in which two coefficients are fixed by the known perturbative results at the boson and fermion points. We compute partition functions by means of path integrals, which we represent diagramatically in such a way that the connected diagrams give the cluster coefficients. This provides a general proof that all cluster and virial coefficients are finite. We give explicit polynomial approximations for all path integral contributions to all cluster coefficients, implying that only the second virial coefficient is statistics dependent, as is the case for two-dimensional exclusion statistics. The assumption leading to these approximations is that the tree diagrams dominate and factorize.


Sign in / Sign up

Export Citation Format

Share Document