simulation monte carlo
Recently Published Documents


TOTAL DOCUMENTS

722
(FIVE YEARS 82)

H-INDEX

44
(FIVE YEARS 8)

Author(s):  
Claudio Rapisarda

AbstractThe Air-Breathing Ion Engine (ABIE) is an electric propulsion system capable of compensating for drag at low altitudes by ingesting the surrounding atmospheric particles to be utilized as propellant. The current state of the art of the ABIE performance is evaluated via Direct Simulation Monte Carlo (DSMC), due to the rarefied nature of the atmosphere in Very-Low Earth Orbit (VLEO). Nevertheless, the scarce availability of relevant simulation methodologies in the literature limits the repeatability of such numerical studies. Therefore, this paper proposes an independent methodology applicable to the modelling and simulation of Atmosphere-Breathing Electric Propulsion (ABEP) intakes that aims to validate the ABIE DSMC results retrieved from the literature. This is achieved by investigating the ABIE intake collection efficiency and compression ratio through the open-source solver dsmcFoam+ and by assessing the results against the available RARAC-3D DSMC data. First, the variation of grid transparency is discussed and compared between both solvers, yielding a mean percentage error of $$2.97\%$$ 2.97 % for the compression ratio and $$2.06\%$$ 2.06 % for the collection efficiency. Second, the absence of intermolecular collisions is verified for which errors of $$1.61\%$$ 1.61 % for collection efficiency and $$3.49\%$$ 3.49 % for compression ratio are observed. Then, the variation of flow incidence angle is simulated between $$0^{\circ }$$ 0 ∘ and $$15^{\circ }$$ 15 ∘ , yielding differences lower than $$1.80\%$$ 1.80 % . Consecutively, the intake aspect ratio is varied between 10 and 40, for which a maximum discrepancy of $$1.83\%$$ 1.83 % is measured and, finally, the drag coefficient of the intake is obtained in dsmcFoam+ to define the power density requirements.


2021 ◽  
pp. 1-28
Author(s):  
D. Nabapure ◽  
A. Singh ◽  
R.C.M. Kalluri

Abstract Hypersonic aerothermodynamics for a re-entry vehicle approaching the earth’s atmosphere is critical in the exploration of space. These vehicles often encounter various flow regimes due to the density variations and have surface abnormalities. The backward-facing step (BFS) is one such simplified configuration for modeling anomalies around such space vehicles. The present work examines rarefied hypersonic flow over a BFS using the direct simulation Monte Carlo (DSMC) method. The purpose of this research is focused on exploring the various loads encountered by a re-entry vehicle passing through different altitudes covering different rarefaction regimes. The fluid considered was non-reacting air, with the free-stream Mach number as 25, and the Knudsen number considered ranged from 0.05-21.10. The influence of the Knudsen number on flow characteristics has been elucidated graphically in various streamwise directions. The normalised flow properties such as velocity, pressure, temperature and density showed an increasing trend with the Knudsen number due to compressibility and viscous heating effects. In all flow regimes, there was an appearance of flow recirculation. With rarefaction, the recirculation lengths decreased, whereas the boundary layer thickness showed an increase. The aerodynamic surface properties such as pressure coefficient, skin friction, and heat transfer coefficient, by and large, showed an increase with the Knudsen number. When the chemical reactions were accounted for and compared against the non-reacting flows, the velocity, pressure, and density field showed no marked variation; however, considerable variations were observed in the temperature field. Furthermore, the present study also depicts the compressibility factor contour, showing the flow regions that diverge from the ideal gas behaviour.


Sign in / Sign up

Export Citation Format

Share Document