The Coulombic phase transition: Density‐scaling Monte Carlo

1991 ◽  
Vol 95 (1) ◽  
pp. 584-589 ◽  
Author(s):  
John P. Valleau
2016 ◽  
Vol 113 (18) ◽  
pp. 4953-4957 ◽  
Author(s):  
Carlo Pierleoni ◽  
Miguel A. Morales ◽  
Giovanni Rillo ◽  
Markus Holzmann ◽  
David M. Ceperley

The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron–ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measured in diamond anvil cell experiments but at 25–30 GPa higher pressure. The transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization.


2008 ◽  
Vol 15 (05) ◽  
pp. 605-612 ◽  
Author(s):  
VLADIMIR P. ZHDANOV

In the conventional Avrami–Kolmogorov–Johnson–Mehl model, the reaction or phase transition occurring in the 2D or 3D infinite medium is considered to start and proceed around randomly distributed and/or appearing nucleation centers. The radius of the regions transformed is assumed to linearly increase with time. The Monte Carlo simulations presented, illustrate what may happen if the transformation takes place in nanoparticles. The attention is focused on nucleation on the regular surface, edge and corner sites, and on the dependence of the activation energy for elementary reaction events on the local state of the sites.


2016 ◽  
Vol 845 ◽  
pp. 158-161
Author(s):  
S.J. Lamekhov ◽  
Dmitry A. Kuzmin ◽  
Igor V. Bychkov ◽  
I.A. Maltsev ◽  
V.G. Shavrov

Behavior of quasi-one-dimensional multiferoic Ca3CoMnO6 in external magnetic field was investigated. Modelling by Monte Carlo method was performed to show influence of external magnetic field on appearance of polarization and temperature of phase transition in electric subsystem. Magnetization, polarization and energy components for magnetic and electric subsystems dependencies were achieved for different values of external magnetic field. Modelling showed that periodic potential in form of Frenkel-Kontorova makes influence on maximal values and temperature of phase transitions for magnetization and polarization.


Sign in / Sign up

Export Citation Format

Share Document