scholarly journals Numerical simulations of oscillating flow and heat transfer in porous media by lattice boltzmann method

Author(s):  
Qunte Dai ◽  
Houlei Chen ◽  
L.W. Yang
Author(s):  
Ammar Tariq ◽  
Zhenyu Liu ◽  
Zhiyu Mu ◽  
Huiying Wu

Abstract Understanding flow and heat transfer in porous media is a matter of prime concern for micro devices. In this work, slip flow and heat transfer of gaseous fluid through the confined porous media is numerically simulated using a multiple-relaxation-time lattice Boltzmann method. The method is employed using an effective curved boundary treatment based on non-equilibrium extrapolation and counter-extrapolation methods. Nusselt number prediction for varying porosity, Knudsen and Reynolds number are studied. Based on the obtained numerical results, it is proved that the current technique can be used to effectively model slip flow and heat transfer at pore-scale.


2003 ◽  
Vol 17 (01n02) ◽  
pp. 183-187 ◽  
Author(s):  
G. H. TANG ◽  
W. Q. TAO ◽  
Y. L. HE

Forced convective flow and heat transfer between two parallel plates are studied using the lattice Boltzmann method (LBM) in this paper. Three kinds of thermal boundary conditions at the top and bottom plates are studied. The velocity field is simulated using density distribution function while a separate internal energy distribution function is introduced to simulate the temperature field. The results agree well with data from traditional finite volume method (FVM) and analytical solutions. The present work indicates that LBM may be developed as a promising method for predicting convective heat transfer because of its many inherent advantages.


Author(s):  
HamidReza KhakRah ◽  
Payam Hooshmand ◽  
David Ross ◽  
Meysam Jamshidian

Purpose The purpose of this paper is to investigate the compact finite-difference lattice Boltzmann method is used to simulate the free convection within a cavity. Design/methodology/approach The finite-difference discretization method enables the numerical simulations to be run when there are non-uniform and curvilinear grids with a finer near-wall grid resolution. Furthermore, the high-order method is applied in the numerical approach, which makes it possible to go with relatively coarse mesh in respect to simulations, which used classical lattice Boltzmann method. The configuration of the cavity is set to sine-walled square. In addition, the cavity is filled with Al2O3-water nanofluid, and the Koo–Kleinstreuer–Li model is used to estimate the properties of nanofluid. Findings The nanoparticle (Al2O3) concentration in the base fluid (water) is considered in a range of 0-0.04. The nanofluid flow and heat transfer are investigated in laminar regime with Rayleigh number in the range of 103-106. The second law analysis is used to study the effects of different governing parameters on the local and volumetric entropy generation. The Rayleigh number, configuration of the cavity and nanoparticle concentration are considered as the governing parameters. The results are mainly focused on the flow structure, temperature field, local and volumetric entropy generation and heat transfer performance. Originality/value The originality of this study is using of a modern numerical method supported by an accurate prediction for nanofluid properties to simulate the flow and heat transfer during natural convection in a cavity.


Sign in / Sign up

Export Citation Format

Share Document