scholarly journals Prediction of bond dissociation energies and transition state barriers by a modified complete basis set model chemistry

1997 ◽  
Vol 107 (5) ◽  
pp. 1513-1521 ◽  
Author(s):  
Tim P. W. Jungkamp ◽  
John H. Seinfeld
2008 ◽  
Vol 07 (05) ◽  
pp. 943-951 ◽  
Author(s):  
XIAO-HONG LI ◽  
ZHENG-XIN TANG ◽  
ABRAHAM F. JALBOUT ◽  
XIAN-ZHOU ZHANG ◽  
XIN-LU CHENG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 15 thiol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86, PBE0) methods and the complete basis set (CBS-Q) method together with 6-311G** basis set. It is demonstrated that B3P86 and CBS-Q methods are accurate for computing the reliable BDEs for thiol compounds. In order to test whether the non-local BLYP method suggested by Fu et al.19 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for seven thiol compounds are also calculated using BLYP/6-31+G* and B3P86 method with 6-31+G*, 6-31+G**, and 6-311+G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is not sensitive to the basis set. Considering the inevitable computational cost of CBS-Q method and the reliability of the B3P86 calculations, B3P86 method with a moderate or a larger basis set may be more suitable to calculate the BDEs of the C–SH bond for thiol compounds.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hong Zhi Li ◽  
Lin Li ◽  
Zi Yan Zhong ◽  
Yi Han ◽  
LiHong Hu ◽  
...  

The paper suggests a new method that combines the Kennard and Stone algorithm (Kenstone, KS), hierarchical clustering (HC), and ant colony optimization (ACO)-based extreme learning machine (ELM) (KS-HC/ACO-ELM) with the density functional theory (DFT) B3LYP/6-31G(d) method to improve the accuracy of DFT calculations for the Y-NO homolysis bond dissociation energies (BDE). In this method, Kenstone divides the whole data set into two parts, the training set and the test set; HC and ACO are used to perform the cluster analysis on molecular descriptors; correlation analysis is applied for selecting the most correlated molecular descriptors in the classes, and ELM is the nonlinear model for establishing the relationship between DFT calculations and homolysis BDE experimental values. The results show that the standard deviation of homolysis BDE in the molecular test set is reduced from 4.03 kcal mol−1calculated by the DFT B3LYP/6-31G(d) method to 0.30, 0.28, 0.29, and 0.32 kcal mol−1by the KS-ELM, KS-HC-ELM, and KS-ACO-ELM methods and the artificial neural network (ANN) combined with KS-HC, respectively. This method predicts accurate values with much higher efficiency when compared to the larger basis set DFT calculation and may also achieve similarly accurate calculation results for larger molecules.


2011 ◽  
Vol 10 (02) ◽  
pp. 179-189 ◽  
Author(s):  
XIAO-HONG LI ◽  
GENG-XIN YIN ◽  
XIAN-ZHOU ZHANG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 20 aliphatic alcohol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, and B3P86) methods with 6-311G** basis set and the complete basis set (CBS-Q) method together. It is demonstrated that B3P86 and CBS-Q methods are accurate to compute the reliable BDEs for aliphatic alcohol compounds. In order to test whether the non-local BLYP method suggested by Jursic18 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for 20 aliphatic alcohol compounds are also calculated using BLYP/6-31+G*, BLYP/6-31G*, and B3P86 methods with 6-31G*, 6-31+G*, and 6-31G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is sensitive to the basis sets. Considering the inevitably computational cost of CBS-Q method and the reliability of the B3P86 calculation, B3P86 method with 6-31G** basis set may be more suitable to calculate the BDEs of the C–O bond for aliphatic alcohol compounds.


2006 ◽  
Vol 421 (4-6) ◽  
pp. 504-507 ◽  
Author(s):  
P. Cabral do Couto ◽  
Benedito J. Costa Cabral ◽  
José A. Martinho Simões

Sign in / Sign up

Export Citation Format

Share Document