Methods for constraining zero-point energy in classical Monte Carlo transition-state theory

1998 ◽  
Vol 108 (4) ◽  
pp. 1438-1446 ◽  
Author(s):  
Alison J. Marks
Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter reviews the microscopic interpretation of the pre-exponential factor and the activation energy in rate constant expressions of the Arrhenius form. The pre-exponential factor of apparent unimolecular reactions is, roughly, expected to be of the order of a vibrational frequency, whereas the pre-exponential factor of bimolecular reactions, roughly, is related to the number of collisions per unit time and per unit volume. The activation energy of an elementary reaction can be interpreted as the average energy of the molecules that react minus the average energy of the reactants. Specializing to conventional transition-state theory, the activation energy is related to the classical barrier height of the potential energy surface plus the difference in zero-point energies and average internal energies between the activated complex and the reactants. When quantum tunnelling is included in transition-state theory, the activation energy is reduced, compared to the interpretation given in conventional transition-state theory.


2001 ◽  
Vol 677 ◽  
Author(s):  
Graeme Henkelman ◽  
Hannes Jónsson

We have carried out long time scale simulations where the “dimer method” [G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999)] is used to find the mechanism and estimate the rate of transitions within harmonic transition state theory and time is evolved by using the kinetic Monte Carlo method. Unlike traditional applications of kinetic Monte Carlo, the atoms are not assigned to lattice sites and a list of all possible transitions does not need to be specified beforehand. Rather, the relevant transitions are found on the y during the simulation. An application to the diffusion and island formation of Al adatoms on an Al(100) surface is presented.


1995 ◽  
Vol 102 (4) ◽  
pp. 1592-1596 ◽  
Author(s):  
Jonathon K. Gregory ◽  
David J. Wales ◽  
David C. Clary

Sign in / Sign up

Export Citation Format

Share Document