High pressure studies of the rhodium–hydrogen system in diamond anvil cell

1998 ◽  
Vol 108 (5) ◽  
pp. 2084-2087 ◽  
Author(s):  
Marek Tkacz
1997 ◽  
Vol 12 (11) ◽  
pp. 3106-3108 ◽  
Author(s):  
J. W. Otto ◽  
J. K. Vassiliou ◽  
G. Frommeyer

Polycrystalline Ni50Al50 suitable for high pressure studies was prepared by grinding and subsequent annealing of an inert-gas atomized alloy. The equation of state was determined by energy-dispersive x-ray diffraction in a diamond anvil cell to 25 GPa. The bulk modulus Bo and the pressure derivative of the bulk modulus B′o were found to be Bo = 156 ± 3 GPa and B′o = 4.0 ± 0.5.


2012 ◽  
Vol 19 (2) ◽  
pp. 245-251 ◽  
Author(s):  
J. I. Pacold ◽  
J. A. Bradley ◽  
B. A. Mattern ◽  
M. J. Lipp ◽  
G. T. Seidler ◽  
...  

2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


1976 ◽  
Vol 30 (2) ◽  
pp. 227-229 ◽  
Author(s):  
Sherril D. Christian ◽  
Just Grundnes ◽  
Peter Klaboe

Sign in / Sign up

Export Citation Format

Share Document