A point-charge model for the nuclear quadrupole moment: Coupled-cluster, Dirac–Fock, Douglas–Kroll, and nonrelativistic Hartree–Fock calculations for the Cu and F electric field gradients in CuF

1998 ◽  
Vol 108 (16) ◽  
pp. 6722-6738 ◽  
Author(s):  
Markus Pernpointner ◽  
Michael Seth ◽  
Peter Schwerdtfeger
2009 ◽  
Vol 87 (7) ◽  
pp. 802-805 ◽  
Author(s):  
Hana Yakobi ◽  
Ephraim Eliav ◽  
Uzi Kaldor

Electric field gradients at the nuclei of gallim and indium are determined by finite field calculations of the atomic energies as functions of the nuclear quadrupole moments. The four-component Dirac–Coulomb–Gaunt Hamiltonian serves as framework, and all electrons are correlated by Fock-space coupled cluster with single and double excitations or by single reference coupled cluster with approximate triples. Large, converged basis sets (e.g., 28s24p20d13f5g4h for In) and virtual spaces are used. Together with experimental nuclear quadrupole coupling constants, known with high precision, the calculated electric field gradients yield the nuclear quadrupole moments. For 69Ga, we get Q = 174(3) mb, in agreement with the earlier 171(2) mb obtained from molecular calculations. The 115In moment is Q = 772(5) mb, considerably lower than the previously accepted 810 mb, and in good agreement with the recent molecular value of 770(8) mb.


Author(s):  
J. L. Staehli ◽  
D. Brinkmann

AbstractThe electric field gradient tensors at theIt was found that the quadrupole coupling constant is correlated with the distortion of the coordination tetrahedra and that the simple point-charge model which neglects polarization effects is apt to yield quite satisfying results for very distorted tetrahedra.Similar results were obtained for the Al and Na sites in albite, NaAlSi


Sign in / Sign up

Export Citation Format

Share Document