Reduction of balance laws to conservation laws by means of equivalence transformations

2013 ◽  
Vol 54 (4) ◽  
pp. 041506 ◽  
Author(s):  
F. Oliveri ◽  
M. P. Speciale
Author(s):  
Xanthippi Markenscoff ◽  
Anurag Gupta

Conservation laws have been recently obtained by requiring that a positive definite functional of the stress gradient (the Euler–Lagrange equations of which are the Beltrami–Michell compatibility conditions) be invariant under certain transformations. Here these laws are extended to include body forces, thermal stresses and Kröner's incompatibility tensor as source terms in the configurational balance laws, which allows for the incompatibility in the volume to be measured from surface data. An example is presented.


1987 ◽  
Vol 54 (2) ◽  
pp. 388-392 ◽  
Author(s):  
J. W. Eischen ◽  
G. Herrmann

A simple and direct derivation of certain balance (or conservation) laws for linear dynamic elasticity is presented including nonhomogeneities, thermal effects, anisotropy, and body forces. Additionally, the connection between the balance laws and energy release rates for defect motions is established.


2018 ◽  
Vol 13 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Eduardo Abreu ◽  
◽  
John Perez ◽  
Arthur Santo ◽  
◽  
...  

2003 ◽  
Vol 24 (3) ◽  
pp. 955-978 ◽  
Author(s):  
Derek S. Bale ◽  
Randall J. LeVeque ◽  
Sorin Mitran ◽  
James A. Rossmanith

2019 ◽  
Vol 16 (02) ◽  
pp. 333-378
Author(s):  
Fabio Ancona ◽  
Laura Caravenna ◽  
Andrea Marson

The paper describes the qualitative structure of BV entropy solutions of a general strictly hyperbolic system of balance laws with characteristic field either piecewise genuinely nonlinear or linearly degenerate. In particular, we provide an accurate description of the local and global wave-front structure of a BV solution generated by a fractional step scheme combined with a wave-front tracking algorithm. This extends the corresponding results in [S. Bianchini and L. Yu, Global structure of admissible BV solutions to piecewise genuinely nonlinear, strictly hyperbolic conservation laws in one space dimension, Comm. Partial Differential Equations 39(2) (2014) 244–273] for strictly hyperbolic system of conservation laws.


2015 ◽  
Vol 12 (01) ◽  
pp. 189-219
Author(s):  
Alexey Miroshnikov ◽  
Konstantina Trivisa

This paper deals with relaxation approximations of nonlinear systems of hyperbolic balance laws. We introduce a class of relaxation schemes and establish their stability and convergence to the solution of hyperbolic balance laws before the formation of shocks, provided that we are within the framework of the compensated compactness method. Our analysis treats systems of hyperbolic balance laws with source terms satisfying a special mechanism which induces weak dissipation in the spirit of Dafermos [Hyperbolic systems of balance laws with weak dissipation, J. Hyp. Diff. Equations 3 (2006) 505–527.], as well as hyperbolic balance laws with more general source terms. The rate of convergence of the relaxation system to a solution of the balance laws in the smooth regime is established. Our work follows in spirit the analysis presented by [Ch. Arvanitis, Ch. Makridakis and A. E. Tzavaras, Stability and convergence of a class of finite element schemes for hyperbolic conservation laws, SIAM J. Numer. Anal. 42(4) (2004) 1357–1393]; [S. Jin and X. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995) 235–277] for systems of hyperbolic conservation laws without source terms.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Feng Zhang ◽  
Yuru Hu ◽  
Xiangpeng Xin

In this article, we study the generalized ( 2 + 1 )-dimensional variable-coefficients Boiti-Leon-Pempinelli (vcBLP) equation. Using Lie’s invariance infinitesimal criterion, equivalence transformations and differential invariants are derived. Applying differential invariants to construct an explicit transformation that makes vcBLP transform to the constant coefficient form, then transform to the well-known Burgers equation. The infinitesimal generators of vcBLP are obtained using the Lie group method; then, the optimal system of one-dimensional subalgebras is determined. According to the optimal system, the ( 1 + 1 )-dimensional reduced partial differential equations (PDEs) are obtained by similarity reductions. Through G ′ / G -expansion method leads to exact solutions of vcBLP and plots the corresponding 3-dimensional figures. Subsequently, the conservation laws of vcBLP are determined using the multiplier method.


Sign in / Sign up

Export Citation Format

Share Document