hyperbolic balance laws
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Yukihito Suzuki ◽  
Masashi Ohnawa ◽  
Naofumi Mori ◽  
Shuichi Kawashima

The goal of this paper is to derive governing equations for complex fluids in a thermodynamically consistent way so that the conservation of energy and the increase of entropy is guaranteed. The model is a system of first-order partial differential equations on density, velocity, energy (or equivalently temperature), and conformation tensor. A barotropic model is also derived. In the one-dimensional case, we express the barotropic model in the form of hyperbolic balance laws, and show that it satisfies the stability condition. Consequently, the global existence of solutions around equilibrium states is proved and the convergence rates is obtained.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1658
Author(s):  
Javier Murillo ◽  
Pilar García-Navarro

The numerical modeling of one-dimensional (1D) domains joined by symmetric or asymmetric bifurcations or arbitrary junctions is still a challenge in the context of hyperbolic balance laws with application to flow in pipes, open channels or blood vessels, among others. The formulation of the Junction Riemann Problem (JRP) under subsonic conditions in 1D flow is clearly defined and solved by current methods, but they fail when sonic or supersonic conditions appear. Formulations coupling the 1D model for the vessels or pipes with other container-like formulations for junctions have been presented, requiring extra information such as assumed bulk mechanical properties and geometrical properties or the extension to more dimensions. To the best of our knowledge, in this work, the JRP is solved for the first time allowing solutions for all types of transitions and for any number of vessels, without requiring the definition of any extra information. The resulting JRP solver is theoretically well-founded, robust and simple, and returns the evolving state for the conserved variables in all vessels, allowing the use of any numerical method in the resolution of the inner cells used for the space-discretization of the vessels. The methodology of the proposed solver is presented in detail. The JRP solver is directly applicable if energy losses at the junctions are defined. Straightforward extension to other 1D hyperbolic flows can be performed.


2021 ◽  
Vol 219 ◽  
pp. 104858
Author(s):  
Jonas P. Berberich ◽  
Praveen Chandrashekar ◽  
Christian Klingenberg

Author(s):  
F. Boso ◽  
D. M. Tartakovsky

Hyperbolic balance laws with uncertain (random) parameters and inputs are ubiquitous in science and engineering. Quantification of uncertainty in predictions derived from such laws, and reduction of predictive uncertainty via data assimilation, remain an open challenge. That is due to nonlinearity of governing equations, whose solutions are highly non-Gaussian and often discontinuous. To ameliorate these issues in a computationally efficient way, we use the method of distributions, which here takes the form of a deterministic equation for spatio-temporal evolution of the cumulative distribution function (CDF) of the random system state, as a means of forward uncertainty propagation. Uncertainty reduction is achieved by recasting the standard loss function, i.e. discrepancy between observations and model predictions, in distributional terms. This step exploits the equivalence between minimization of the square error discrepancy and the Kullback–Leibler divergence. The loss function is regularized by adding a Lagrangian constraint enforcing fulfilment of the CDF equation. Minimization is performed sequentially, progressively updating the parameters of the CDF equation as more measurements are assimilated.


Sign in / Sign up

Export Citation Format

Share Document