scholarly journals Self/anti-self charge conjugate states in the helicity basis

2013 ◽  
Author(s):  
Valeriy V. Dvoeglazov
2019 ◽  
Vol 65 (6 Nov-Dec) ◽  
pp. 612
Author(s):  
Valeriy V. Dvoeglazov

An analog of the $S=1/2$ Feynman-Dyson propagator is presented in the framework of the $S=1$ Weinberg's theory.The basis for this construction is the concept of the Weinberg field as a system of four field functions differing by parity and by dual transformations.Next, we analyze the recent controversy in the definitions of the Feynman-Dyson propagator for the field operator containing the $S=1/2$ self/anti-self charge conjugate states in the papers by D. Ahluwalia et al. and by W. Rodrigues Jr. et al. The solution of this mathematical controversy is obvious. It is related to the necessary doubling of the Fock Space (as in the Barut and Ziino works), thus extending the corresponding Clifford Algebra. However, the logical interrelations of different mathematical foundations with the physical interpretations are not so obvious. Physics should choose only one correct formalism- it is not clear, why two correct mathematical formalisms (which are based on the same postulates) lead to different physical results?


2002 ◽  
pp. 161-170 ◽  
Author(s):  
Valentina B. Petkova ◽  
Jean-Bernard Zuber
Keyword(s):  

Science ◽  
2019 ◽  
Vol 363 (6422) ◽  
pp. 54-57 ◽  
Author(s):  
Fabien Lafont ◽  
Amir Rosenblatt ◽  
Moty Heiblum ◽  
Vladimir Umansky

The quantum Hall effect, observed in a two-dimensional (2D) electron gas subjected to a perpendicular magnetic field, imposes a 1D-like chiral, downstream, transport of charge carriers along the sample edges. Although this picture remains valid for electrons and Laughlin’s fractional quasiparticles, it no longer holds for quasiparticles in the so-called hole-conjugate states. These states are expected, when disorder and interactions are weak, to harbor upstream charge modes. However, so far, charge currents were observed to flow exclusively downstream in the quantum Hall regime. Studying the canonical spin-polarized and spin-unpolarized v = 2/3 hole-like states in GaAs-AlGaAs heterostructures, we observed a significant upstream charge current at short propagation distances in the spin unpolarized state.


1996 ◽  
Vol 314 ◽  
pp. 331-347 ◽  
Author(s):  
Paul A. Roberts ◽  
Stephen Hibberd

This paper presents a theoretical investigation of the occurrence of hydraulic jumps in two-layer systems induced by extraction of fluid from the upper layer. The physical configuration consists of a horizontal main pipe along which air and water flow, and a vertically upward side arm. An hydraulic model based on the momentum principle assuming that the fluids do not mix is developed that leads to at least two possible conjugate states for any given two-layer flow. A method of determining the amount of gas which must be extracted into the side arm for a jump to occur is developed and predictions shown to be in reasonable agreement with observation. Unusually, it is shown that above this critical gas take-off value two possible states remain energetically feasible.


Sign in / Sign up

Export Citation Format

Share Document