Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

2014 ◽  
Vol 21 (10) ◽  
pp. 102101 ◽  
Author(s):  
Asit Saha ◽  
Nikhil Pal ◽  
Prasanta Chatterjee
Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 563-567 ◽  
Author(s):  
Jianyong Wang ◽  
Ying Zeng ◽  
Zufeng Liang ◽  
Yani Xu ◽  
Yuanxiang Zhang

Abstract In this work, we are concerned with the ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons. By using the reductive perturbation method, the Korteweg-de Vries equation is derived from the governing equations of ion acoustic waves. An interesting soliton-cnoidal wave solution of the Korteweg-de Vries equation and its quasi-soliton behaviour are presented. The influence of electron superthermality, positron superthermality and positron concentration ratio on characteristics of the quasi-soliton is confirmed to be significant.


2013 ◽  
Vol 79 (5) ◽  
pp. 569-576 ◽  
Author(s):  
MUSTAPHA BACHA ◽  
MOULOUD TRIBECHE

AbstractUsing the reductive perturbation approach, dust–ion acoustic solitons and double layers (DLs) have been studied in a dust–electron–positron–ion (d-e-p-i) plasma composed of q-distributed electrons and positrons, warm fluid ions, and a fraction of immobile dust grains. Existence domains of either solitary waves or DLs are presented and their parametric dependence determined. It is found that particle non-extensivity, dust concentration and positron concentration may drastically affect these existence domains and may play a key role in defining the polarity of these localized structures. Our results should assist in interpreting the nonlinear structures that may occur in astrophysical environments.


2012 ◽  
Vol 79 (1) ◽  
pp. 37-44 ◽  
Author(s):  
DEB KUMAR GHOSH ◽  
UDAY NARAYAN GHOSH ◽  
PRASANTA CHATTERJEE

AbstractThe properties of non-planar (cylindrical and spherical) ion acoustic solitary waves (IASWs) in an unmagnetized collisionless electron-positron-ion (e-p-i) plasma, whose constituents are inertial ions and superthermal/non-Maxwellian electrons and positrons (represented by the kappa (κ) distribution), are investigated by deriving the modified Gardner (MG) equation. The well-known reductive perturbation method is employed to derive the MG equation. The basic features of non-planar IA Gardner solitons (GSs) are discussed. It is seen that the properties of non-planar IAGSs (positive and negative) differ significantly as the value of spectral index kappa changes.


1997 ◽  
Vol 50 (2) ◽  
pp. 309 ◽  
Author(s):  
Y. N. Nejoh

The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with positrons. We have presented the region of existence of the ion-acoustic waves by analysing the structure of the pseudopotential. The region of existence sensitively depends on the positron to electron density ratio, the ion to electron mass ratio and the positron to electron temperature ratio. It is shown that the maximum Mach number increases as the positron temperature increases and the region of existence of the ion-acoustic waves spreads as the positron temperature increases. The present theory is applicable to analyse large amplitude ion-acoustic waves associated with positrons which may occur in space plasmas.


2009 ◽  
Vol 16 (6) ◽  
pp. 062305 ◽  
Author(s):  
Nusrat Jehan ◽  
M. Salahuddin ◽  
Arshad M. Mirza

Sign in / Sign up

Export Citation Format

Share Document