scholarly journals Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

2015 ◽  
Vol 27 (1) ◽  
pp. 015105 ◽  
Author(s):  
B. Rosa ◽  
H. Parishani ◽  
O. Ayala ◽  
L.-P. Wang
2018 ◽  
Vol 97 (3) ◽  
Author(s):  
Akshay Bhatnagar ◽  
Anupam Gupta ◽  
Dhrubaditya Mitra ◽  
Rahul Pandit

2012 ◽  
Vol 699 ◽  
pp. 50-78 ◽  
Author(s):  
G. Sardina ◽  
P. Schlatter ◽  
L. Brandt ◽  
F. Picano ◽  
C. M. Casciola

AbstractWe study the two main phenomenologies associated with the transport of inertial particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis describes the turbulence-induced wall accumulation of particles dispersed in wall turbulence, while small-scale clustering is a form of local segregation that affects the particle distribution in the presence of fine-scale turbulence. Despite the fact that the two aspects are usually addressed separately, this paper shows that they occur simultaneously in wall-bounded flows, where they represent different aspects of the same process. We study these phenomena by post-processing data from a direct numerical simulation of turbulent channel flow with different populations of inertial particles. It is shown that artificial domain truncation can easily alter the mean particle concentration profile, unless the domain is large enough to exclude possible correlation of the turbulence and the near-wall particle aggregates. The data show a strong link between accumulation level and clustering intensity in the near-wall region. At statistical steady state, most accumulating particles aggregate in strongly directional and almost filamentary structures, as found by considering suitable two-point observables able to extract clustering intensity and anisotropy. The analysis provides quantitative indications of the wall-segregation process as a function of the particle inertia. It is shown that, although the most wall-accumulating particles are too heavy to segregate in homogeneous turbulence, they exhibit the most intense local small-scale clustering near the wall as measured by the singularity exponent of the particle pair correlation function.


2011 ◽  
Vol 333 ◽  
pp. 012003 ◽  
Author(s):  
J Bec ◽  
L Biferale ◽  
M Cencini ◽  
A S Lanotte ◽  
F Toschi

2019 ◽  
Vol 862 ◽  
pp. 449-489 ◽  
Author(s):  
A. Innocenti ◽  
R. O. Fox ◽  
M. V. Salvetti ◽  
S. Chibbaro

Inertial particles in turbulent flows are characterised by preferential concentration and segregation and, at sufficient mass loading, dense particle clusters may spontaneously arise due to momentum coupling between the phases. These clusters, in turn, can generate and sustain turbulence in the fluid phase, which we refer to as cluster-induced turbulence (CIT). In the present work, we tackle the problem of developing a framework for the stochastic modelling of moderately dense particle-laden flows, based on a Lagrangian probability-density-function formalism. This framework includes the Eulerian approach, and hence can be useful also for the development of two-fluid models. A rigorous formalism and a general model have been put forward focusing, in particular, on the two ingredients that are key in moderately dense flows, namely, two-way coupling in the carrier phase, and the decomposition of the particle-phase velocity into its spatially correlated and uncorrelated components. Specifically, this last contribution allows us to identify in the stochastic model the contributions due to the correlated fluctuating energy and to the granular temperature of the particle phase, which determine the time scale for particle–particle collisions. The model is then validated and assessed against direct-numerical-simulation data for homogeneous configurations of increasing difficulty: (i) homogeneous isotropic turbulence, (ii) decaying and shear turbulence and (iii) CIT.


Sign in / Sign up

Export Citation Format

Share Document