25.P.12 Continual models, based on fokker-plank equation, For inertial particles motion in laminar and turbulent flows

1994 ◽  
Vol 25 ◽  
pp. 373-374
Author(s):  
A.B. Vatazhin ◽  
A.Yu. Klimenko
2008 ◽  
Vol 84 (4) ◽  
pp. 40005 ◽  
Author(s):  
F. De Lillo ◽  
F. Cecconi ◽  
G. Lacorata ◽  
A. Vulpiani

Author(s):  
Ehsan Dehdarinejad ◽  
Morteza Bayareh ◽  
Mahmud Ashrafizaadeh

Abstract The transfer of particles in laminar and turbulent flows has many applications in combustion systems, biological, environmental, nanotechnology. In the present study, a Combined Baffles Quick-Separation Device (CBQSD) is simulated numerically using the Eulerian-Lagrangian method and different turbulence models of RNG k-ε, k-ω, and RSM for 1–140 μm particles. A two-way coupling technique is employed to solve the particles’ flow. The effect of inlet flow velocity, the diameter of the splitter plane, and solid particles’ flow rate on the separation efficiency of the device is examined. The results demonstrate that the RSM turbulence model provides more appropriate results compared to RNG k-ε and k-ω models. Four thousand two hundred particles with the size distribution of 1–140 µm enter the device and 3820 particles are trapped and 380 particles leave the device. The efficiency for particles with a diameter greater than 28 µm is 100%. The complete separation of 22–28 μm particles occurs for flow rates of 10–23.5 g/s, respectively. The results reveal that the separation efficiency increases by increasing the inlet velocity, the device diameter, and the diameter of the particles.


Author(s):  
Yong-Wen Wu ◽  
Jia Wu

The oscillatory flow in a baffled tube reactor provides a significant enhancement of radial transfer of momentum, heat and mass and a good control of axial back mixing at a wide range of net flow rate. But little has been known about reliable details of the three-dimensional structure of flow field in this kind of flow because most published studies in the area were based on the two-dimensional simulation techniques. This paper implemented a three-dimensional numerical simulation study on the asymmetry of flow pattern in the baffled tube reactor which was observed experimentally. A systematic study by numerical simulation was carried out which covered a range of oscillatory Reynolds number (Reo) from 100 to 5,000 and employed models respectively for laminar and turbulent flows. It was found in the simulation that under symmetric boundary conditions the transition from axially symmetric flow to asymmetric one depended on the numerical technique employed in simulation. With a structured grid frame the transition occurred at Reo much greater than that with an unstructured grid frame, for both laminar and turbulent flows. It is not rational that the onset of the transition changes with the accuracy of numerical technique. Based on the simulation results, it was postulated that the asymmetry appeared in simulations with symmetric boundary conditions might result from the accumulation of calculation errors but the asymmetry observed in experiments might result from the slight asymmetry of geometry which exists inevitably in any experiment apparatus. To explore the influence of the slight asymmetry of geometry, the effect of the eccentricity of baffles and the declination of oscillating boundary were studied by use of the finite volume method with a structured grid and adaptive time steps. The simulation result showed that both the eccentricity of baffles and the declination of oscillating boundary have obvious influence on the asymmetry of flow patterns for laminar and turbulent flow. More details were discussed in the paper.


1986 ◽  
Vol 108 (1) ◽  
pp. 64-70 ◽  
Author(s):  
O. K. Kwon ◽  
R. H. Pletcher

A viscous-inviscid interaction scheme has been developed for computing steady incompressible laminar and turbulent flows in two-dimensional duct expansions. The viscous flow solutions are obtained by solving the boundary-layer equations inversely in a coupled manner by a finite-difference scheme; the inviscid flow is computed by numerically solving the Laplace equation for streamfunction using an ADI finite-difference procedure. The viscous and inviscid solutions are matched iteratively along displacement surfaces. Details of the procedure are presented in the present paper (Part 1), along with example applications to separated flows. The results compare favorably with experimental data. Applications to turbulent flows over a rearward-facing step are described in a companion paper (Part 2).


Sign in / Sign up

Export Citation Format

Share Document