Negative vortices: The formation of vortex rings with reversed rotation in viscoelastic liquids

2015 ◽  
Vol 27 (5) ◽  
pp. 051703 ◽  
Author(s):  
Carlos Palacios-Morales ◽  
Christophe Barbosa ◽  
Francisco Solorio ◽  
Roberto Zenit
1966 ◽  
Vol 5 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Gianni Astarita ◽  
Luigi Nicodemo
Keyword(s):  

2020 ◽  
Vol 5 (11) ◽  
Author(s):  
Bhavini Singh ◽  
Lalit K. Rajendran ◽  
Jiacheng Zhang ◽  
Pavlos P. Vlachos ◽  
Sally P. M. Bane
Keyword(s):  

2018 ◽  
Vol 3 (9) ◽  
Author(s):  
I. Danaila ◽  
F. Luddens ◽  
F. Kaplanski ◽  
A. Papoutsakis ◽  
S. S. Sazhin

2019 ◽  
Vol 94 (8) ◽  
pp. 084001
Author(s):  
R Sooraj ◽  
A Sameen
Keyword(s):  

1997 ◽  
Vol 13 (2) ◽  
pp. 120-129 ◽  
Author(s):  
Ye Quyuan ◽  
C. K. Chu

Author(s):  
G. N. Sekhar ◽  
G. Jayalatha

A linear stability analysis of convection in viscoelastic liquids with temperature-dependent viscosity is studied using normal modes and Galerkin method. Stationary convection is shown to be the preferred mode of instability when the ratio of strain retardation parameter to stress relaxation parameter (elasticity ratio) is greater than unity. When the ratio is less than unity the possibility of oscillatory convection is shown to arise. Oscillatory convection is studied numerically for Rivlin-Ericksen, Walters B′, Maxwell and Jeffreys liquids by considering free-free and rigid-free isothermal/adiabatic boundaries. It is found that there is a tight coupling between the Rayleigh and Marangoni numbers, with an increase in one resulting in a decrease in the other. The effect of variable viscosity parameter is shown to destabilize the system. The problem reveals the stabilizing nature of strain retardation parameter and destabilizing nature of stress relaxation parameter, on the onset of convection. The Maxwell liquids are found to be more unstable than the one subscribing to Jeffreys description whereas the Rivlin-Ericksen and Walters B′ liquids are comparatively more stable. Rigid-free adiabatic boundary combination is found to give rise to a most stable system, whereas the free isothermal free adiabatic combination gives rise to a most unstable system. The problem has applications in non-isothermal systems having viscoelastic liquids as working media.


1986 ◽  
Vol 41 (9) ◽  
pp. 2273-2283 ◽  
Author(s):  
D. Dekée ◽  
P.J. Carreau ◽  
J. Mordarski

Sign in / Sign up

Export Citation Format

Share Document