scholarly journals Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions

2016 ◽  
Vol 57 (2) ◽  
pp. 021508 ◽  
Author(s):  
T. I. Valchev
2016 ◽  
Vol 28 (03) ◽  
pp. 1650006 ◽  
Author(s):  
Shabnam Beheshti ◽  
Shadi Tahvildar-Zadeh

After formulating the notion of integrability for axially symmetric harmonic maps from [Formula: see text] into symmetric spaces, we give a complete and rigorous proof that, subject to some mild restrictions on the target, all such maps are integrable. Furthermore, we prove that a variant of the inverse scattering method, called vesture (dressing) can always be used to generate new solutions for the harmonic map equations starting from any given solution. In particular, we show that the problem of finding [Formula: see text]-solitonic harmonic maps into a non-compact Grassmann manifold [Formula: see text] is completely reducible via the vesture (dressing) method to a problem in linear algebra which we prove is solvable in general. We illustrate this method, and establish its agreement with previously known special cases, by explicitly computing a 1-solitonic harmonic map for the two cases [Formula: see text] and [Formula: see text] and showing that the family of solutions obtained in each case contains respectively the Kerr family of solutions to the Einstein vacuum equations, and the Kerr–Newman family of solutions to the Einstein–Maxwell equations in the hyperextreme sector of the corresponding parameters.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


1981 ◽  
Vol 64 (11) ◽  
pp. 18-26 ◽  
Author(s):  
Tetsuya Nomura ◽  
Nobuhiro Miki ◽  
Nobuo Nagai

Sign in / Sign up

Export Citation Format

Share Document