Optimized design and operation of heat-pipe photovoltaic thermal system with phase change material for thermal storage

2016 ◽  
Vol 8 (2) ◽  
pp. 023501 ◽  
Author(s):  
A. Sweidan ◽  
N. Ghaddar ◽  
K. Ghali
2020 ◽  
Vol 24 (1) ◽  
pp. 378-391
Author(s):  
Mikelis Dzikevics ◽  
Ivars Veidenbergs ◽  
Kęstutis Valančius

AbstractIncrease in solar fraction has been noted as one of the main goals for wider application of domestic solar thermal systems. To increase solar fraction, higher energy density thermal storage availability is a key point. In this paper phase change materials have been analysed as part of a domestic solar thermal system. Sensitivity analysis of annual simulation in TRNSYS with climate data of Riga, Latvia is used. The paper also explores better methods for evaluating phase change material (PCM) performance based on temperature measurements in PCM. The results showed that the melting point of PCM and temperature set point of an auxiliary heater have the highest sensitivity of aspects analysed in the paper. It also reports that the coefficient of variation of energy in PCM correlates well with solar fraction and can be used as a parameter to evaluate PCM’s suitability for certain applications.


2019 ◽  
Vol 29 (4) ◽  
pp. 1490-1505 ◽  
Author(s):  
Alper Ergün ◽  
Hilal Eyinç

Purpose Nanotechnology has developed gradually in recent years and it is encountered in various applications. It has many usage area especially in energy systems. The purpose of this study, in a photovoltaic thermal system, thermal behaviours of a PV panel has been investigated by energy and exergy analysis method using a phase change material inserted 5 per cent weighted Al2O3 nanoparticle. Design/methodology/approach In this study, one of the three different PV panels was kept normally, the other one was filled with a phase changing material (paraffin-wax) and the last panel was filled with the mixture of a nanoparticle and paraffin-wax. Findings After the analyses, especially during the time intervals when the radiation is high, it is found that the panel with Np-paraffin mixture has a high electrical and thermal efficiency. In addition, as a result of the exergy analyses, average exergy efficiency of the panel with Np-paraffin mixture has been determined as 10 per cent, whereas that of the panel with paraffin as 9.2 per cent. Originality/value Nanoparticles had not been used with PCMs in photovoltaic–thermal systems in the studies made before.


2016 ◽  
Vol 91 ◽  
pp. 113-121 ◽  
Author(s):  
Maria C. Browne ◽  
Declan Quigley ◽  
Hanna R. Hard ◽  
Sarah Gilligan ◽  
Nadja C.C. Ribeiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document