Split-step orthogonal spline collocation method for the complex Ginzburg-Landau equation in two dimensions

2017 ◽  
Author(s):  
Shanshan Wang
Author(s):  
Marco A. Viscarra ◽  
Deterlino Urzagasti

In this paper, we numerically study dark solitons in normal-dispersion optical fibers described by the cubic-quintic complex Ginzburg–Landau equation. The effects of the third-order dispersion, self-steepening, stimulated Raman dispersion, and external potentials are also considered. The existence, chaotic content and interactions of these objects are analyzed, as well as the tunneling through a potential barrier and the formation of dark breathers aside from dark solitons in two dimensions and their mutual interactions as well as with periodic potentials. Furthermore, the homogeneous solutions of the model and the conditions for their stability are also analytically obtained.


2020 ◽  
Vol 18 (1) ◽  
pp. 67-86
Author(s):  
Xiaoyong Xu ◽  
Fengying Zhou

Abstract In this paper, a discrete orthogonal spline collocation method combining with a second-order Crank-Nicolson weighted and shifted Grünwald integral (WSGI) operator is proposed for solving time-fractional wave equations based on its equivalent partial integro-differential equations. The stability and convergence of the schemes have been strictly proved. Several numerical examples in one variable and in two space variables are given to demonstrate the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document