Dark soliton solutions of the cubic-quintic complex Ginzburg–Landau equation with high-order terms and potential barriers in normal-dispersion fiber lasers

Author(s):  
Marco A. Viscarra ◽  
Deterlino Urzagasti

In this paper, we numerically study dark solitons in normal-dispersion optical fibers described by the cubic-quintic complex Ginzburg–Landau equation. The effects of the third-order dispersion, self-steepening, stimulated Raman dispersion, and external potentials are also considered. The existence, chaotic content and interactions of these objects are analyzed, as well as the tunneling through a potential barrier and the formation of dark breathers aside from dark solitons in two dimensions and their mutual interactions as well as with periodic potentials. Furthermore, the homogeneous solutions of the model and the conditions for their stability are also analytically obtained.

2020 ◽  
Vol 34 (19) ◽  
pp. 2050179
Author(s):  
Aly R. Seadawy ◽  
Mujahid Iqbal

In this research article, our aim is to construct new optical soliton solutions for nonlinear complex Ginzburg–Landau equation with the help of modified mathematical technique. In this work, we studied both laws of nonlinearity (Kerr and power laws). The obtained solutions represent dark and bright solitons, singular and combined bright-dark solitons, traveling wave, and periodic solitary wave. The determined solutions provide help in the development of optical fibers, soliton dynamics, and nonlinear optics. The constructed solitonic solutions prove that the applicable technique is more reliable, efficient, fruitful and powerful to investigate higher order complex nonlinear partial differential equations (PDEs) involved in mathematical physics, quantum plasma, geophysics, mechanics, fiber optics, field of engineering, and many other kinds of applied sciences.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 219
Author(s):  
Khalil S. Al-Ghafri

In this work, we investigate the conformable space–time fractional complex Ginzburg–Landau (GL) equation dominated by three types of nonlinear effects. These types of nonlinearity include Kerr law, power law, and dual-power law. The symmetry case in the GL equation due to the three types of nonlinearity is presented. The governing model is dealt with by a straightforward mathematical technique, where the fractional differential equation is reduced to a first-order nonlinear ordinary differential equation with solution expressed in the form of the Weierstrass elliptic function. The relation between the Weierstrass elliptic function and hyperbolic functions enables us to derive two types of optical soliton solutions, namely, bright and singular solitons. Restrictions for the validity of the optical soliton solutions are given. To shed light on the behaviour of solitons, the graphical illustrations of obtained solutions are represented for different values of various parameters. The symmetrical structure of some extracted solitons is deduced when the fractional derivative parameters for space and time are symmetric.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750305 ◽  
Author(s):  
Hai-Qiang Zhang ◽  
Yue Wang

In this paper, we construct the binary Darboux transformation on the coupled higher-order dispersive nonlinear Schrödinger equations in optical fibers. We present the N-fold iterative transformation in terms of the determinants. By the limit technique, we derive the N-dark–dark soliton solutions from the non-vanishing background. Based on the obtained solutions, we find that the collision mechanisms of dark vector solitons exhibit the standard elastic collisions in both two components.


Sign in / Sign up

Export Citation Format

Share Document