scholarly journals Potential energy surfaces for electron dynamics modeled by floating and breathing Gaussian wave packets with valence-bond spin-coupling: An analysis of high-harmonic generation spectrum

2018 ◽  
Vol 148 (9) ◽  
pp. 094305 ◽  
Author(s):  
Koji Ando
2019 ◽  
Author(s):  
Ishita Bhattacharjee ◽  
Debashree Ghosh ◽  
Ankan Paul

The question of quadruple bonding in C<sub>2</sub> has emerged as a hot button issue, with opinions sharply divided between the practitioners of Valence Bond (VB) and Molecular Orbital (MO) theory. Here, we have systematically studied the Potential Energy Curves (PECs) of low lying high spin sigma states of C<sub>2</sub>, N<sub>2</sub> and Be<sub>2</sub> and HC≡CH using several MO based techniques such as CASSCF, RASSCF and MRCI. The analyses of the PECs for the<sup> 2S+1</sup>Σ<sub>g/u</sub> (with 2S+1=1,3,5,7,9) states of C<sub>2</sub> and comparisons with those of relevant dimers and the respective wavefunctions were conducted. We contend that unlike in the case of N<sub>2</sub> and HC≡CH, the presence of a deep minimum in the <sup>7</sup>Σ state of C<sub>2</sub> and CN<sup>+</sup> suggest a latent quadruple bonding nature in these two dimers. Hence, we have struck a reconciliatory note between the MO and VB approaches. The evidence provided by us can be experimentally verified, thus providing the window so that the narrative can move beyond theoretical conjectures.


2009 ◽  
Vol 5 (3) ◽  
pp. 594-604 ◽  
Author(s):  
Meiyu Zhao ◽  
Mark A. Iron ◽  
Przemysław Staszewski ◽  
Nathan E. Schultz ◽  
Rosendo Valero ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3232
Author(s):  
Janet E. Del Bene ◽  
Ibon Alkorta ◽  
José Elguero

Ab initio Møller–Plesset perturbation theory (MP2)/aug’-cc-pVTZ calculations have been carried out in search of complexes, molecules, and transition structures on HN(CH)SX:SCO potential energy surfaces for X = F, Cl, NC, CCH, H, and CN. Equilibrium complexes on these surfaces have C1 symmetry, but these have binding energies that are no more than 0.5 kJ·mol–1 greater than the corresponding Cs complexes which are vibrationally averaged equilibrium complexes. The binding energies of these span a narrow range and are independent of the N–C distance across the tetrel bond, but they exhibit a second-order dependence on the S–S distance across the chalcogen bond. Charge-transfer interactions stabilize all of these complexes. Only the potential energy surfaces HN(CH)SF:SCO and HN(CH)SCl:SCO have bound molecules that have short covalent N–C bonds and significantly shorter S…S chalcogen bonds compared to the complexes. Equation-of-motion coupled cluster singles and doubles (EOM-CCSD) spin-spin coupling constants 1tJ(N–C) for the HN(CH)SX:SCO complexes are small and exhibit no dependence on the N–C distance, while 1cJ(S–S) exhibit a second-order dependence on the S–S distance, increasing as the S–S distance decreases. Coupling constants 1tJ(N–C) and 1cJ(S–S) as a function of the N–C and S–S distances, respectively, in HN(CH)SF:SCO and HN(CH)SCl:SCO increase in the transition structures and then decrease in the molecules. These changes reflect the changing nature of the N…C and S…S bonds in these two systems.


Sign in / Sign up

Export Citation Format

Share Document