Visualization of the collective vortex-like motions in liquid argon and water: Molecular dynamics simulation

2018 ◽  
Vol 148 (9) ◽  
pp. 094508 ◽  
Author(s):  
A. V. Anikeenko ◽  
G. G. Malenkov ◽  
Yu. I. Naberukhin
2007 ◽  
Vol 1022 ◽  
Author(s):  
Suranjan Sarkar ◽  
R. Panneer Selvam

AbstractA model nanofluid system of copper nanoparticles in argon base fluid was successfully modeled by molecular dynamics simulation. The interatomic interactions between solid copper nanoparticles, base liquid argon atoms and between solid copper and liquid argon were modeled by Lennard Jones potential with appropriate parameters. The effective thermal conductivity of the nanofluids was calculated through Green Kubo method in equilibrium molecular dynamics simulation for varying nanoparticle concentrations and for varying system temperatures. Thermal conductivity of the basefluid was also calculated for comparison. This study showed that effective thermal conductivity of nanofluids is much higher than that of the base fluid and found to increase with increased nanoparticle concentration and system temperature. Through molecular dynamics calculation of mean square displacements for basefluid, nanofluid and its components, we suggested that the increased movement of liquid atoms in the presence of nanoparticle was probable mechanism for higher thermal conductivity of nanofluids.


Author(s):  
Xunyan Yin ◽  
Minli Bai ◽  
Chengzhi Hu ◽  
Jizu Lv

Molecular dynamics simulation was performed to investigate pool boiling heat transfer of nanofluids on rough walls. Nanoparticle movement was calculated to investigate the physical mechanisms of boiling heat transfer. The simulated system consisted of four regions: vapor argon, liquid argon, solid copper, and copper nanoparticles, and three cases were considered: base fluids (case A), nanoparticles far from the wall (case B), and nanoparticles near the wall (case C). Boiling heat transfer was enhanced by the addition of nanoparticles, and the enhancement increased with increasing heating temperature. Case C showed that nanoparticles were adsorbed on the nonevaporated film and did not move with the fluids. Thus, nanoparticles enhanced heat and energy transfer between the wall and fluids. Case B showed that nanoparticles moved randomly in the fluid area, which enhanced heat transfer within the fluid.


Author(s):  
R. Panneer Selvam ◽  
Suranjan Sarkar

Nanofluids have been proposed as a route for surpassing the performance of currently available heat transfer liquids for better thermal management needed in many diverse industries and research laboratories. Recent experiments on nanofluids have indicated a significant increase in thermal conductivity with 0.5 to 2% of nanoparticle loading in comparison to that of the base fluid. But the extent of thermal conductivity enhancement sometimes greatly exceeds the predictions of well established classical theories like Maxwell and Hamilton Crosser theory. In addition to that, these classical theories can not explain the temperature and nanoparticle size dependency of nanofluid thermal conductivity. Atomistic simulation like molecular dynamics simulation can be a very helpful tool to model the enhanced nanoscale thermal conduction and predict thermal conductivities in different situations. In this study a model nanofluid system of copper nanoparticles in argon base fluid is successfully modeled by equilibrium molecular dynamics simulation in NVT ensemble and thermal conductivities of base fluid and nanofluids are computed using Green Kubo method. The interatomic interactions between solid copper nanoparticles, base liquid argon atoms and between solid copper and liquid argon are modeled by Lennard Jones potential with appropriate parameters. For different volume fractions of nanoparticle loading, the thermal conductivities are calculated. The nanoparticle size effects on thermal conductivities of nanofluids are also systematically studied. This study indicates the usefulness of MD simulation to calculate thermal conductivity of nanofluid and explore the higher thermal conduction in molecular level.


2017 ◽  
Vol 113 ◽  
pp. 208-214 ◽  
Author(s):  
Shiwei Zhang ◽  
Feng Hao ◽  
Haimu Chen ◽  
Wei Yuan ◽  
Yong Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document