Thermal Conductivity Computation of Nanofluids by Equilibrium Molecular Dynamics Simulation: Nanoparticle Loading and Temperature Effect

2007 ◽  
Vol 1022 ◽  
Author(s):  
Suranjan Sarkar ◽  
R. Panneer Selvam

AbstractA model nanofluid system of copper nanoparticles in argon base fluid was successfully modeled by molecular dynamics simulation. The interatomic interactions between solid copper nanoparticles, base liquid argon atoms and between solid copper and liquid argon were modeled by Lennard Jones potential with appropriate parameters. The effective thermal conductivity of the nanofluids was calculated through Green Kubo method in equilibrium molecular dynamics simulation for varying nanoparticle concentrations and for varying system temperatures. Thermal conductivity of the basefluid was also calculated for comparison. This study showed that effective thermal conductivity of nanofluids is much higher than that of the base fluid and found to increase with increased nanoparticle concentration and system temperature. Through molecular dynamics calculation of mean square displacements for basefluid, nanofluid and its components, we suggested that the increased movement of liquid atoms in the presence of nanoparticle was probable mechanism for higher thermal conductivity of nanofluids.

Author(s):  
R. Panneer Selvam ◽  
Suranjan Sarkar

Nanofluids have been proposed as a route for surpassing the performance of currently available heat transfer liquids for better thermal management needed in many diverse industries and research laboratories. Recent experiments on nanofluids have indicated a significant increase in thermal conductivity with 0.5 to 2% of nanoparticle loading in comparison to that of the base fluid. But the extent of thermal conductivity enhancement sometimes greatly exceeds the predictions of well established classical theories like Maxwell and Hamilton Crosser theory. In addition to that, these classical theories can not explain the temperature and nanoparticle size dependency of nanofluid thermal conductivity. Atomistic simulation like molecular dynamics simulation can be a very helpful tool to model the enhanced nanoscale thermal conduction and predict thermal conductivities in different situations. In this study a model nanofluid system of copper nanoparticles in argon base fluid is successfully modeled by equilibrium molecular dynamics simulation in NVT ensemble and thermal conductivities of base fluid and nanofluids are computed using Green Kubo method. The interatomic interactions between solid copper nanoparticles, base liquid argon atoms and between solid copper and liquid argon are modeled by Lennard Jones potential with appropriate parameters. For different volume fractions of nanoparticle loading, the thermal conductivities are calculated. The nanoparticle size effects on thermal conductivities of nanofluids are also systematically studied. This study indicates the usefulness of MD simulation to calculate thermal conductivity of nanofluid and explore the higher thermal conduction in molecular level.


Author(s):  
N. A. Roberts ◽  
D. G. Walker ◽  
D. Y. Li

The effectiveness of a thermoelectric device is measured by the figure of merit ZT, which is inversely proportional to the thermal conductivity. Superlattice materials often have a reduced thermal conductivity because of the introduction of interface scattering and, therfore, improved performance. The present work is focused on the effective thermal conductivity of nanocomposite films. This configuration could also improve ZT because of phonon-interface scattering introduced by the nanocrystals. The effects of crystal size and mass fraction is studied numerically using a molecular dynamics simulation. Results indicate that a reduction in the effective thermal conductivity can be achieved with the addition of a nanocrystal.


2020 ◽  
Vol 161 ◽  
pp. 112004
Author(s):  
Hongyu Zhang ◽  
Jizhong Sun ◽  
Yingmin Wang ◽  
Thomas Stirner ◽  
Ali Y. Hamid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document