scholarly journals Magnon-impurity interaction effect on the magnonic heat capacity of the Lieb lattice

AIP Advances ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 125317 ◽  
Author(s):  
P. T. T. Le ◽  
B. D. Hoi ◽  
Mohsen Yarmohammadi
Author(s):  
R.A. Herring ◽  
M. Griffiths ◽  
M.H Loretto ◽  
R.E. Smallman

Because Zr is used in the nuclear industry to sheath fuel and as structural component material within the reactor core, it is important to understand Zr's point defect properties. In the present work point defect-impurity interaction has been assessed by measuring the influence of grain boundaries on the width of the zone denuded of dislocation loops in a series of irradiated Zr alloys. Electropolished Zr and its alloys have been irradiated using an AEI EM7 HVEM at 1 MeV, ∼675 K and ∼10-6 torr vacuum pressure. During some HVEM irradiations it has been seen that there is a difference in the loop nucleation and growth behaviour adjacent to the grain boundary as compared with the mid-grain region. The width of the region influenced by the presence of the grain boundary should be a function of the irradiation temperature, dose rate, solute concentration and crystallographic orientation.


2008 ◽  
Vol 13 (4) ◽  
pp. 239-247 ◽  
Author(s):  
David De Cremer ◽  
Barbara C. Schouten

The present research examined the idea that the effectiveness of apologies on promoting fairness perceptions depends on how meaningful and sincere the apology is experienced. More precisely, it was predicted that apologies are more effective when they are communicated by an authority being respectful to others. A study using a cross-sectional organizational survey showed that an apology (relative to giving no apology) revealed higher fairness perceptions, but only so when the authority was respectful rather than disrespectful. In a subsequent experimental laboratory study the same interaction effect (as in Study 1) on fairness perceptions was found. In addition, a similar interaction effect also emerged on participants’ self-evaluations in terms of relational appreciation (i.e., feeling valued and likeable). Finally, these self-evaluations accounted (at least partly) for the interactive effect on fairness perceptions.


2010 ◽  
Vol 9 (2) ◽  
pp. 69-78 ◽  
Author(s):  
David De Cremer ◽  
Maarten Wubben

The present research examined how voice procedures and leader confidence affect participants’ negative emotions and willingness to withdraw. It was predicted that receiving voice would be valued out of instrumental concerns, but only when the enacting leader was high in confidence. Two laboratory experiments indeed showed an interaction between type of voice (pre-decisional vs. post-decisional) and leader’s confidence (low vs. high) on participants’ negative emotions and willingness to withdraw. In particular, post-decision voice only led to more negative responses than did pre-decision voice when the enacting leader was high in confidence. Negative emotions mediated this interaction effect of type of voice on willingness to withdraw. Implications for integrating the leadership and procedural justice literatures are discussed.


1971 ◽  
Vol 32 (C1) ◽  
pp. C1-1008-C1-1009 ◽  
Author(s):  
E. LAGENDIJK ◽  
W. J. HUISKAMP ◽  
P. F. BONGERS

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-794-C6-795 ◽  
Author(s):  
E. M. Forgan ◽  
C. M. Muirhead
Keyword(s):  

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-2133-C8-2134
Author(s):  
K. Kumagai ◽  
Y. Nakamura ◽  
I. Watanabe ◽  
Y. Nakamichi ◽  
H. Nakajima
Keyword(s):  

Author(s):  
V.N. Moraru

The results of our work and a number of foreign studies indicate that the sharp increase in the heat transfer parameters (specific heat flux q and heat transfer coefficient _) at the boiling of nanofluids as compared to the base liquid (water) is due not only and not so much to the increase of the thermal conductivity of the nanofluids, but an intensification of the boiling process caused by a change in the state of the heating surface, its topological and chemical properties (porosity, roughness, wettability). The latter leads to a change in the internal characteristics of the boiling process and the average temperature of the superheated liquid layer. This circumstance makes it possible, on the basis of physical models of the liquids boiling and taking into account the parameters of the surface state (temperature, pressure) and properties of the coolant (the density and heat capacity of the liquid, the specific heat of vaporization and the heat capacity of the vapor), and also the internal characteristics of the boiling of liquids, to calculate the value of specific heat flux q. In this paper, the difference in the mechanisms of heat transfer during the boiling of single-phase (water) and two-phase nanofluids has been studied and a quantitative estimate of the q values for the boiling of the nanofluid is carried out based on the internal characteristics of the boiling process. The satisfactory agreement of the calculated values with the experimental data is a confirmation that the key factor in the growth of the heat transfer intensity at the boiling of nanofluids is indeed a change in the nature and microrelief of the heating surface. Bibl. 20, Fig. 9, Tab. 2.


Sign in / Sign up

Export Citation Format

Share Document