Numerical solution of the problem of surface combustion on flat porous matrix

2018 ◽  
Author(s):  
V. S. Arutyunov ◽  
A. A. Belyaev ◽  
B. V. Lidskii ◽  
A. V. Nikitin ◽  
V. S. Posvyanskii ◽  
...  
1974 ◽  
Vol 22 ◽  
pp. 307 ◽  
Author(s):  
Zdenek Sekanina

AbstractIt is suggested that the outbursts of Periodic Comet Schwassmann-Wachmann 1 are triggered by impacts of interplanetary boulders on the surface of the comet’s nucleus. The existence of a cloud of such boulders in interplanetary space was predicted by Harwit (1967). We have used the hypothesis to calculate the characteristics of the outbursts – such as their mean rate, optically important dimensions of ejected debris, expansion velocity of the ejecta, maximum diameter of the expanding cloud before it fades out, and the magnitude of the accompanying orbital impulse – and found them reasonably consistent with observations, if the solid constituent of the comet is assumed in the form of a porous matrix of lowstrength meteoric material. A Monte Carlo method was applied to simulate the distributions of impacts, their directions and impact velocities.


2020 ◽  
Vol 2 (1) ◽  
pp. 15-18
Author(s):  
Syabeela Syahali ◽  
Ewe Hong Tat ◽  
Gobi Vetharatnam ◽  
Li-Jun Jiang ◽  
Hamsalekha A Kumaresan

This paper analyses the backscattering cross section of a cylinder both using traditional method model and a new numerical solution model, namely Relaxed Hierarchical Equivalent Source Algorithm (RHESA). The purpose of this study is to investigate the prospect of incorporating numerical solution model into volume scattering calculation, to be applied into microwave remote sensing in vegetation area. Results show a good match, suggesting that RHESA may be suitable to be used to model the more complex nature of vegetation medium.


Sign in / Sign up

Export Citation Format

Share Document