Characterization of a controlled shock wave delivered by a pneumatic table-top gas driven shock tube

2019 ◽  
Vol 90 (7) ◽  
pp. 075116 ◽  
Author(s):  
Bogumila Swietek ◽  
Maciej Skotak ◽  
Namas Chandra ◽  
Bryan J. Pfister
Keyword(s):  
1986 ◽  
Vol 108 (1) ◽  
pp. 109-114 ◽  
Author(s):  
M. J. Tan ◽  
S. G. Bankoff

Fragmentation of mercury drops falling through a bubbly aqueous liquid by a pressure shock wave was investigated by means of a shock tube capable of operating at driver pressures up to 3 MPa. The responses to moderately strong shock waves (up to 1.7 MPa) were photographed by a high-speed camera at rates of up to 4400 frames per second. The results show the existence of a critical Weber number, (We)cr = 17, for drop fragmentation. Qualitative characterization of the shock-drop interactions for single mercury drops is provided.


1988 ◽  
Vol 110 (3) ◽  
pp. 386-392 ◽  
Author(s):  
D. C. Rabe ◽  
A. J. Wennerstrom ◽  
W. F. O’Brien

The passage shock wave–endwall boundary layer interaction in a transonic compressor was investigated with a laser transit anemometer. The transonic compressor used in this investigation was developed by the General Electric Company under contract to the Air Force. The compressor testing was conducted in the Compressor Research Facility at Wright-Patterson Air Force Base, OH. Laser measurements were made in two blade passages at seven axial locations from 10 percent of the axial blade chord in front of the leading edge to 30 percent of the axial blade chord into the blade passage. At three of these axial locations, laser traverses were taken at different radial immersions. A total of 27 different locations were traversed circumferentially. The measurements reveal that the endwall boundary layer in this region is separated from the core flow by what appears to be a shear layer where the passage shock wave and all ordered flow seem to end abruptly.


2021 ◽  
Vol 15 (4) ◽  
pp. 685-690
Author(s):  
S. V. Khomik ◽  
I. V. Guk ◽  
A. N. Ivantsov ◽  
S. P. Medvedev ◽  
E. K. Anderzhanov ◽  
...  

Author(s):  
Paul Xiubao Huang ◽  
Robert S. Mazzawy

This paper is a continuing work from one author on the same topic of the transient aerodynamics during compressor stall/surge using a shock tube analogy by Huang [1, 2]. As observed by Mazzawy [3] for the high-speed high-pressure (HSHP) ratio compressors of the modern aero-engines, surge is an event characterized with the stoppage and reversal of engine flow within a matter of milliseconds. This large flow transient is accomplished through a pair of internally generated shock waves and expansion waves of high strength. The final results are often dramatic with a loud bang followed by the spewing out of flames from both the engine intake and exhaust, potentially damaging to the engine structure [3]. It has been demonstrated in the previous investigations by Marshall [4] and Huang [2] that the transient flow reversal phase of a surge cycle can be approximated by the shock tube analogy in understanding its generation mechanism and correlating the shock wave strength as a function of the pre-surge compressor pressure ratio. Kurkov [5] and Evans [8] used a guillotine analogy to estimate the inlet overpressure associated with the sudden flow stoppage associated with surge. This paper will expand the progressive surge model established by the shock tube analogy in [2] by including the dynamic effect of airflow stoppage using an “integrated-flow” sequential guillotine/shock tube model. It further investigates the surge formation (characterized by flow reversal) and propagation patterns (characterized by surge shock and expansion waves) after its generation at different locations inside a compressor. Calculations are conducted for a 12-stage compressor using this model under various surge onset stages and compared with previous experimental data [3]. The results demonstrate that the “integrated-flow” model closely replicates the fast moving surge shock wave overpressure from the stall initiation site to the compressor inlet.


Sign in / Sign up

Export Citation Format

Share Document