granular material
Recently Published Documents


TOTAL DOCUMENTS

1461
(FIVE YEARS 226)

H-INDEX

70
(FIVE YEARS 5)

2022 ◽  
Vol 141 ◽  
pp. 104530
Author(s):  
Mingchun Lin ◽  
Wei Zhou ◽  
Jiaying Liu ◽  
Gang Ma ◽  
Xuexing Cao

Author(s):  
Gabriel Orquizas Mattielo Pedroso ◽  
Gabriel Ramos ◽  
Jefferson Lins da Silva
Keyword(s):  

2021 ◽  
Vol 11 (23) ◽  
pp. 11287
Author(s):  
Halvor T. Tramsen ◽  
Lars Heepe ◽  
Stanislav N. Gorb

For maximizing friction forces of the robotic legs on an unknown/unpredictable substrate, we introduced the granular media friction pad, consisting of a thin elastic membrane encasing loosely filled granular material. On coming into contact with a substrate, the fluid-like granular material flows around the substrate asperities and achieves large contact areas with the substrate. Upon applying load, the granular material undergoes the jamming transition, rigidifies and becomes solid-like. High friction forces are generated by mechanical interlocking on rough substrates, internal friction of the granular media and by the enhanced contact area caused by the deformation of the membrane. This system can adapt to a large variety of dry substrate topologies. To further increase its performance on moist or wet substrates, we adapted the granular media friction pad by structuring the outside of the membrane with a 3D hexagonal pattern. This results in a significant increase in friction under lubricated conditions, thus greatly increasing the universal applicability of the granular media friction pad for a multitude of environments.


2021 ◽  
Vol 931 ◽  
Author(s):  
Osamu Sano ◽  
Timir Karmakar ◽  
G.P. Raja Sekhar

Viscous flow around spherical macroscopic cavities in a granular material is investigated. The Stokes equation inside and the Darcy–Brinkman equation outside the cavities are considered. In particular, the interaction of two equally sized cavities positioned in tandem is examined in detail, where the asymptotic effect of the other cavity is taken into account. The present analysis gives a reasonable estimate on the volume flow into the cavity and the local enhancement of stresses. This is applicable to predict the microscale waterway formation in that material, onset of landslides, collapse of cliffs and river banks, etc.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4043
Author(s):  
Alvaro Rodríguez-Ortiz ◽  
Isabel Muriel-Plaza ◽  
Cristina Alía-García ◽  
Paz Pinilla-Cea ◽  
Juan C. Suárez-Bermejo

Currently, the procurement of lightweight, tough, and impact resistant materials is garnering significant industrial interest. New hybrid materials can be developed on the basis of the numerous naturally found materials with gradient properties found in nature. However, previous studies on granular materials demonstrate the possibility of capturing the energy generated by an impact within the material itself, thus deconstructing the initial impulse into a series of weaker impulses, dissipating the energy through various mechanisms, and gradually releasing undissipated energy. This work focuses on two production methods: spin coating for creating a granular material with composition and property gradients (an acrylonitrile–butadiene–styrene (ABS) polymer matrix reinforced by carbon nanolaminates at 0.10%, 0.25%, and 0.50%) and 3D printing for generating viscoelastic layers. The aim of this research was to obtain a hybrid material from which better behaviour against shocks and impacts and increased energy dissipation capacity could be expected when the granular material and viscoelastic layers were combined. Nondestructive tests were employed for the morphological characterization of the nanoreinforcement and testing reinforcement homogeneity within the matrix. Furthermore, the Voronoï tessellation method was used as a mathematical method to supplement the results. Finally, mechanical compression tests were performed to reveal additional mechanical properties of the material that had not been specified by the manufacturer of the 3D printing filaments.


Sign in / Sign up

Export Citation Format

Share Document