Volume 2A: Turbomachinery
Latest Publications


TOTAL DOCUMENTS

84
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791850992

Author(s):  
Li-Wei Chen ◽  
Christian Wakelam ◽  
Jonathan Ong ◽  
Andreas Peters ◽  
Andrea Milli ◽  
...  

Numerical investigation of the compressible flow in the Turbine Center Frame (TCF) duct was carried out using a Reynolds-averaged Navier-Stokes (RANS) method, and a Hybrid RANS/Large Eddy Simulation (HLES) method, i.e. Stress-Blended Eddy Simulation (SBES). The reference Reynolds number based on the TCF inlet condition is 530,000, and the inlet Mach number is 0.41. It is found that the boundary layer flow behavior is very sensitive to the incoming turbulence characteristics, so the upstream grid used to generate turbulence in the experiment is also included in the computational domain. Results have been validated carefully against experimental data, in terms of static pressure distribution on hub and casing walls, total pressure and Mach number profiles on the TCF measurement planes, as well as over-all pressure loss coefficient. Further, various fundamental mechanisms dictating the intricate flow phenomena, including concave and convex curvature effects, interactions between inlet turbulent structures and boundary layer, and turbulent kinetic energy budget, have been studied systematically. The current study is to evaluate the performance of HLES method for TCF flows and develop a further understanding of unsteady flow physics in the TCF duct. The results obtained in this work provide physical insight into the mechanisms relevant to the turbine intercase or TCF duct flows subjected to complex inlet disturbances.


Author(s):  
Seishiro Saito ◽  
Kazutoyo Yamada ◽  
Masato Furukawa ◽  
Keisuke Watanabe ◽  
Akinori Matsuoka ◽  
...  

This paper describes unsteady flow phenomena of a two-stage transonic axial compressor, especially the flow field in the first stator. The stator blade with highly loaded is likely to cause a flow separation on the hub, so-called hub-corner separation. The flow mechanism of the hub-corner separation in the first stator is investigated in detail using a large-scale detached eddy simulation (DES) conducted for its full-annulus and full-stage with approximately 4.5 hundred million computational cells. The detailed analysis of complicated flow fields in the compressor is supported by data mining techniques. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological analysis of the limiting streamline pattern. The simulation results show that the flow field in the hub-corner separation is dominated by a tornado-type separation vortex. In the time averaged flow field, the hub-corner separation vortex rolls up from the hub wall, which is generated by the interaction between the mainstream flow, the leakage flow from the front partial clearance and the secondary flow across the blade passage toward the stator blade suction side. The hub-corner separation vortex suffers a vortex breakdown near the mid chord, where the high loss region due to the hub-corner separation expands drastically. In the rear part of the stator passage, a high loss region is migrated radially outward by the induced velocity of the hub-corner separation vortex. The flow field in the stator is influenced by the upstream and downstream rotors, which makes it difficult to understand the unsteady effects. The unsteady flow fields are analyzed by applying the phase-locked ensemble averaging technique. It is found from the phase-locked flow fields that the wake interaction from the upstream rotor has more influence on the stator flow field than the shock wave interaction from the downstream rotor. In the unsteady flow field, a focal-type separation also emerges on the blade suction surface, but it is periodically swept away by the wake passing of the upstream rotor. The separation vortex on the hub wall connects with the one on the blade suction surface, forming an arch-like vortex.


Author(s):  
Ashley D. Scillitoe ◽  
Paul G. Tucker ◽  
Paolo Adami

Large Eddy Simulation (LES) is used to explore the boundary layer transition mechanisms in two rectilinear compressor cascades. To reduce numerical dissipation, a novel locally adaptive smoothing scheme is added to an unstructured finite-volume solver. The performance of a number of Sub-Grid Scale (SGS) models is explored. With the first cascade, numerical results at two different freestream turbulence intensities (Ti’s), 3.25% and 10%, are compared. At both Ti’s, time-averaged skin-friction and pressure coefficient distributions agree well with previous Direct Numerical Simulations (DNS). At Ti = 3.25%, separation induced transition occurs on the suction surface, whilst it is bypassed on the pressure surface. The pressure surface transition is dominated by modes originating from the convection of Tollmien-Schlichting waves by Klebanoff streaks. However, they do not resembled a classical bypass transition. Instead, they display characteristics of the “overlap” and “inner” transition modes observed in the previous DNS. At Ti = 10%, classical bypass transition occurs, with Klebanoff streaks incepting turbulent spots. With the second cascade, the influence of unsteady wakes on transition is examined. Wake-amplified Klebanoff streaks were found to instigate turbulent spots, which periodically shorten the suction surface separation bubble. The celerity line corresponding to 70% of the free-stream velocity, which is associated with the convection speed of the amplified Klebanoff streaks, was found to be important.


Author(s):  
John Kidikian ◽  
Marcelo Reggio

With yearly advances in CFD techniques and methodologies, and the increased capacity and capabilities of computer CPU, GPU, and information storage, CFD has become a powerful design tool. However, despite its vast strengths, a CFD analysis is still based on the sound development of the 1D mean-line analysis methodology. This paper (part 1 of 2) describes an off-design axial compressor mean-line code, tested in a specialized engineering software for the development and analysis of a whole gas turbine engine, and the various tuning factors used to obtain an off-design performance match. It will be shown that, to obtain a proper match of the off-design performance of single-stage transonic axial compressors, both the rotor and stage pressure ratio, and the rotor temperature ratio are required to be converged upon. To do so, the off-design mean-line analysis requires the incorporation of a set of inlet & exit blockage factors and deviation angles that vary with the compressor performance conditions. This approach differs from the literature-based procedural assumptions (or rule-of-thumb) of fixed inlet and exit blockage factors of approximately “0.98”, and the use of a unique deviation angle based on Carter’s rule. The results obtained in this paper are then used to develop a generalized off-design mean-line loss modelling methodology (part 2 of 2) capable of predicting the off-design performance of four well documented NASA transonic axial compressors.


Author(s):  
John Kidikian ◽  
Marcelo Reggio

In Part 1, of this two-part paper, an off-design mean-line code and a generalized methodology to obtain “tuning” factors were presented. It was shown that the modified factors were capable of predicting the off-design performance of four well documented NASA transonic axial compressors. In this paper, Part 2, a generalized methodology to create correlations for the rotor and stator total pressure losses, deviation angles, and blade row inlet and exit blockage factors is presented. The generalized mean-line loss modelling methodology will allow the compressor designer to decommission the use of the performance map scaling techniques. In its place, the generalized predictive methodology will accurately estimate the off-design performance of transonic axial compressors and can be used to fill the gaps of missing data.


Author(s):  
Dun Lin ◽  
Xiutao Bian ◽  
Xin Yuan ◽  
Xinrong Su

In this work, the flow inside a high pressure turbine (HPT) stage is studied with the help of a high-fidelity delayed detached eddy simulation (DDES) code. This work intends to study the flow topology in the HPT stage. There are two motivations for this work: On the one hand, high pressure turbines operates at both transonic Mach numbers and high Reynolds numbers, which imposes a challenge to modern computational fluid dynamics (CFD), especially for scale-resolved simulation methods. An accurate and efficient high-fidelity CFD solver is very important for a thorough understanding of the flow physics and the design of higher-efficient HPT. On the other hand, the wake vortex shedding and tip-leakage flow are important origins of turbine losses and unsteadiness. Built on our previous DDES simulations of HPT vane and stage, this work further investigates the flow in a full 3-dimension HPT stage. The flow topology in the HPT stage is delineated by Q-criterion iso-surfaces. The development of the horseshoe vortex and its interaction with induced vortex and wake vortex is discussed. The wake vortex transportation especially its interaction with the rotor horseshoe vortex is investigated. The flow structures in the tip clearance region are also revealed.


Author(s):  
Quentin Dejour ◽  
Huu Duc Vo

This paper presents the first assessment of a new non-axial counter-rotating compressor concept. This concept consists of replacing the stator of a mixed-flow compressor stage or the diffuser of a centrifugal compressor stage with a counter-rotating rotor that will turn the flow back to the axial direction with much lower diffusion factor, while providing the equivalent in work of the upstream mixed-flow rotor or impeller. This concept has two advantages. First, the very high stage pressure rise means that only a single counter-rotating rotor may be required, making mechanical implementation simpler than for multi-stage axial counter-rotating compressors. Second, the replacement of the high flow turning (high loss) stator/diffuser in a non-axial stage with a low flow turning counter-rotating rotor gives the new concept potential for achieving higher efficiency than conventional non-axial compressors. As a first proof of concept, a subsonic counter-rotating mixed-flow compressor and its conventional (i.e. rotor-stator) equivalent have been designed with the intent of being implemented in a test rig. CFD simulations have been carried out for a comparative evaluation of both configurations. Results show that the counter-rotating mixed-flow compressor produces more than double the pressure rise of its conventional version with a slightly higher peak-efficiency while having a smaller axial length. Moreover, the counter-rotating configuration has a better stall margin than its conventional counterpart, for which the boundary layer separation from excessive flow turning in the stator causes early stall.


Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


Author(s):  
Marcus Lejon ◽  
Niklas Andersson ◽  
Lars Ellbrant ◽  
Hans Mårtensson

In this paper, the impact of manufacturing variations on performance of an axial compressor rotor are evaluated at design rotational speed. The geometric variations from the design intent were obtained from an optical coordinate measuring machine and used to evaluate the impact of manufacturing variations on performance and the flow field in the rotor. The complete blisk is simulated using 3D CFD calculations, allowing for a detailed analysis of the impact of geometric variations on the flow. It is shown that the mean shift of the geometry from the design intent is responsible for the majority of the change in performance in terms of mass flow and total pressure ratio for this specific blisk. In terms of polytropic efficiency, the measured geometric scatter is shown to have a higher influence than the geometric mean deviation. The geometric scatter around the mean is shown to impact the pressure distribution along the leading edge and the shock position. Furthermore, a blisk is analyzed with one blade deviating substantially from the design intent, denoted as blade 0. It is shown that the impact of blade 0 on the flow is largely limited to the blade passages that it is directly a part of. The results presented in this paper also show that the impact of this blade on the flow field can be represented by a simulation including 3 blade passages. In terms of loss, using 5 blade passages is shown to give a close estimate for the relative change in loss for blade 0 and neighboring blades.


Author(s):  
John P. Clark ◽  
Richard J. Anthony ◽  
Michael K. Ooten ◽  
John M. Finnegan ◽  
P. Dean Johnson ◽  
...  

Accurate predictions of unsteady forcing on turbine blades are essential for the avoidance of high-cycle-fatigue issues during turbine engine development. Further, if one can demonstrate that predictions of unsteady interaction in a turbine are accurate, then it becomes possible to anticipate resonant-stress problems and mitigate them through aerodynamic design changes during the development cycle. A successful reduction in unsteady forcing for a transonic turbine with significant shock interactions due to downstream components is presented here. A pair of methods to reduce the unsteadiness was considered and rigorously analyzed using a three-dimensional, time resolved Reynolds-Averaged Navier Stokes (RANS) solver. The first method relied on the physics of shock reflections itself and involved altering the stacking of downstream components to achieve a bowed airfoil. The second method considered was circumferentially-asymmetric vane spacing which is well known to spread the unsteadiness due to vane-blade interaction over a range of frequencies. Both methods of forcing reduction were analyzed separately and predicted to reduce unsteady pressures on the blade as intended. Then, both design changes were implemented together in a transonic turbine experiment and successfully shown to manipulate the blade unsteadiness in keeping with the design-level predictions. This demonstration was accomplished through comparisons of measured time-resolved pressures on the turbine blade to others obtained in a baseline experiment that included neither asymmetric spacing nor bowing of the downstream vane. The measured data were further compared to rigorous post-test simulations of the complete turbine annulus including a bowed downstream vane of non-uniform pitch.


Sign in / Sign up

Export Citation Format

Share Document