Hemodynamic blood flow through a section of human artery under the effect of applied magnetic field

2019 ◽  
Author(s):  
Abdul Karim ◽  
Md. Motahar Hossain ◽  
Salma Parvin ◽  
Md. Abdul Hakim Khan
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Mekonnen Shiferaw Ayano ◽  
Stephen T. Sikwila ◽  
Stanford Shateyi

Mixed convection flow through a rectangular duct with at least one of the sides of the walls of the rectangle being isothermal under the influence of transversely applied magnetic field has been analyzed numerically in this study. The governing differential equations of the problem have been transformed into a system of nondimensional differential equations and then solved numerically. The dimensionless velocity, microrotation components, and temperature profiles are displayed graphically showing the effects of various values of the parameters present in the problem. The results showed that the flow field is notably influenced by the considered parameters. It is found that increasing the aspect ratio increases flow reversal, commencement of the flow reversal is observed after some critical value, and the applied magnetic field increases the flow reversal in addition to flow retardation. The microrotation components flow in opposite direction; also it is found that one component of the microrotation will show no rotational effect around the center of the duct.


Author(s):  
K. W. Bunonyo ◽  
C. U. Amadi

In this research, we investigated the effect of tumor growth on blood flow through a micro channel by formulated the governing model with the assumption that blood is an incompressible, eclectrially conducting fluid which flow is caused by the pumping action of the heart and suction. The governing model was scaled using some dimensionless variables and the region of the tumor was obtained from Dominguez [1] which was incorporated in our model. The model is further reduced to an ordinary differential equation using a perturbation condition. However, the ordinary differential equation was solved using method of undermined coefficients, and the constants coefficients obtained via matrix method. Furthermore, the simulation to study the effect of the pertinent parameters was done suing computation software called Mathematica. It is seen in our investigation that the entering parameters such as magnetic field parameter, the Reynolds number, womersley number, oscillatory frequency parameter, and permeability parameter affect the blood velocity profile in decreasing and increasing fashion.


Sign in / Sign up

Export Citation Format

Share Document